Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients

Abstract

Little is known about the biological mechanisms underpinning the pathology of schizophrenia. We have analysed the proteome of stimulated and unstimulated peripheral blood mononuclear cells (PBMCs) from schizophrenia patients and controls as a potential model of altered cellular signaling using liquid-chromatography mass spectrometry proteomic profiling. PBMCs from patients and controls were stimulated for 72 h in vitro using staphylococcal enterotoxin B. In total, 18 differentially expressed proteins between first-onset, antipsychotic-naive patients and controls in the unstimulated and stimulated conditions were identified. Remarkably, eight of these proteins were associated with the glycolytic pathway and patient–control differences were more prominent in stimulated compared with unstimulated PBMCs. None of these proteins were altered in chronically ill antipsychotic-treated patients. Non-linear multivariate statistical analysis showed that small subsets of these proteins could be used as a signal for distinguishing first-onset patients from controls with high precision. Functional analysis of PBMCs did not reveal any difference in the glycolytic rate between patients and controls despite increased levels of lactate and the glucose transporter-1, and decreased levels of the insulin receptor in patients. In addition, subjects showed increased serum levels of insulin, consistent with the idea that some schizophrenia patients are insulin resistant. These results show that schizophrenia patients respond differently to PBMC activation and this is manifested at disease onset and may be modulated by antipsychotic treatment. The glycolytic protein signature associated with this effect could therefore be of diagnostic and prognostic value. Moreover, these results highlight the importance of using cells for functional discovery and show that it may not be sufficient to measure protein expression levels in static states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pack S . Poor physical health and mortality in patients with schizophrenia. Nurs Stand 2009; 23: 41–45.

    Article  PubMed  Google Scholar 

  2. Sawa A, Snyder SH . Schizophrenia: diverse approaches to a complex disease. Science 2002; 296: 692–695.

    Article  CAS  PubMed  Google Scholar 

  3. Riley B, Kendler KS . Molecular genetic studies of schizophrenia. Eur J Hum Genet 2006; 14: 669–680.

    Article  CAS  PubMed  Google Scholar 

  4. Rutter M, Moffitt TE, Caspi A . Gene–environment interplay and psychopathology: multiple varieties but real effects. J Child Psychol Psychiatry 2006; 47: 226–261.

    Article  PubMed  Google Scholar 

  5. Martins-de-Souza D, Gattaz W, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E et al. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2009; 259: 151–163.

    Article  PubMed  Google Scholar 

  6. Harris L, Swatton J, Wengenroth M, Wayland M, Lockstone H, Holland A et al. Differences in protein profiles in schizophrenia prefrontal cortex compared to other major brain disorders. Clin Schizophrenia Relat Psychoses 2007; 1: 73–91.

    Article  Google Scholar 

  7. Meyer JM, Stahl SM . The metabolic syndrome and schizophrenia. Acta Psychiatrica Scandinavica 2009; 119: 4–14.

    Article  CAS  PubMed  Google Scholar 

  8. Guest PC, Wang L, Harris LW, Burling K, Levin Y, Ernst A et al. Increased levels of circulating insulin-related peptides in first-onset, antipsychotic naive schizophrenia patients. Mol Psychiatry 2010; 15: 118–119.

    Article  CAS  PubMed  Google Scholar 

  9. Riedel M, Spellmann I, Schwarz MJ, Strassnig M, Sikorski C, Moller HJ et al. Decreased T cellular immune response in schizophrenic patients. J Psychiatr Res 2007; 41: 3–7.

    Article  PubMed  Google Scholar 

  10. Herberth M, Krzyszton DN, Koethe D, Craddock MR, Bulger E, Schwarz E et al. Differential effects on T-cell function following exposure to serum from schizophrenia smokers. Mol Psychiatry 2010; 15: 364–371.

    Article  CAS  PubMed  Google Scholar 

  11. Craddock RM, Huang JT, Jackson E, Harris N, Torrey EF, Herberth M et al. Increased alpha-defensins as a blood marker for schizophrenia susceptibility. Mol Cell Proteomics 2008; 7: 1204–1213.

    Article  CAS  PubMed  Google Scholar 

  12. Kuzman MR, Medved V, Terzic J, Krainc D . Genome-wide expression analysis of peripheral blood identifies candidate biomarkers for schizophrenia. J Psychiatr Res 2009; 43: 1073–1077.

    Article  PubMed  Google Scholar 

  13. Torres KCL, Souza BR, Miranda DM, Nicolato R, Neves FS, Barros AGA et al. The leukocytes expressing DARPP-32 are reduced in patients with schizophrenia and bipolar disorder. Progress Neuropsychopharmacol Biol Psychiatry 2009; 33: 214–219.

    Article  CAS  Google Scholar 

  14. Rollins B, Martin MV, Morgan L, Vawter MP . Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 919–936.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fox CJ, Hammerman PS, Thompson CB . Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005; 5: 844–852.

    Article  CAS  PubMed  Google Scholar 

  16. Craddock RM, Lockstone HE, Rider DA, Wayland MT, Harris LJ, McKenna PJ et al. Altered T-cell function in schizophrenia: a cellular model to investigate molecular disease mechanisms. PLoS ONE 2007; 2: e692.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levin Y, Schwarz E, Wang L, Leweke FM, Bahn S . Label-free LC-MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J Sep Sci 2007; 30: 2198–2203.

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz E, Levin Y, Wang L, Leweke FM, Bahn S . Peptide correlation: a means to identify high quality quantitative information in large-scale proteomic studies. J Sep Sci 2007; 30: 2190–2197.

    Article  CAS  PubMed  Google Scholar 

  19. Liu X-Y, Yang J-L, Chen L-J, Zhang Y, Yang M-L, Wu Y-Y et al. Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 2008; 8: 582–603.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng TM, Lu YE, Guest PC, Rahmoune H, Harris LW, Wang L et al. Identification of targeted analyte clusters for studies of schizophrenia. Mol Cell Proteomics 2010; 9: 510–522.

    Article  CAS  PubMed  Google Scholar 

  21. Schoelkopf B, Smola A, Mueller K-R . Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 1998; 10: 1299–1319.

    Article  Google Scholar 

  22. Libby P . Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am J Med 2008; 121 (10, Supplement 1): S21–S31.

    Article  CAS  PubMed  Google Scholar 

  23. Davies AMC, Fearn T . Back to basics: the principles of principal component analysis. Spectrosc Eur 2005; 4: 20–23.

    Google Scholar 

  24. Roos D, Loos JA . Changes in the carbohydrate metabolism of mitogenicellay stimulated human peripheral lymphocytes I. Stimulation by phytohaemagglutinin. Biochim Biophys Acta 1970; 222: 565–582.

    Article  CAS  PubMed  Google Scholar 

  25. Wu C, Khan SA, Lange AJ . Regulation of glycolysis—role of insulin. Exp Gerontol 2005; 40: 894–899.

    Article  CAS  PubMed  Google Scholar 

  26. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002; 16: 769–777.

    Article  CAS  PubMed  Google Scholar 

  27. Frauwirth KA, Thompson CB . Regulation of T lymphocyte metabolism. J Immunol 2004; 172: 4661–4665.

    Article  CAS  PubMed  Google Scholar 

  28. Jin EH, Shim SC, Kim HG, Chae SC, Chung HT . Polymorphisms of COTL1 gene identified by proteomic approach and their association with autoimmune disorders. Exp Mol Med 2009; 41: 354–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dai H, Huang W, Xu J, Yao B, Xiong S, Ding H et al. Binding model of human coactosin-like protein with filament actin revealed by mutagenesis. Biochim Biophys Acta 2006; 1764: 1688–1700.

    Article  CAS  PubMed  Google Scholar 

  30. Martins-de-Souza D, Gattaz W, Schmitt A, Novello J, Marangoni S, Turck C et al. Proteome analysis of schizophrenia patients Wernicke's area reveals an energy metabolism dysregulation. BMC Psychiatry 2009; 9: 17.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyas E, Eberlin MN et al. Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 2009; 43: 978–986.

    Article  PubMed  Google Scholar 

  32. Kim JJ, Mandelli L, Lim S, Lim HK, Kwon OJ, Pae CU et al. Association analysis of heat shock protein 70 gene polymorphisms in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2008; 258: 239–244.

    Article  PubMed  Google Scholar 

  33. Arion D, Unger T, Lewis DA, Levitt P, Mirnics K . Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry 2007; 62: 711–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiu HY, Tsao LY, Yang RC . Heat-shock response protects peripheral blood mononuclear cells (PBMCs) from hydrogen peroxide-induced mitochondrial disturbance. Cell Stress Chaperones 2009; 14: 207–217.

    Article  CAS  PubMed  Google Scholar 

  35. MacIver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC . Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 2008; 84: 949–957.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Taguchi A, Wartschow LM, White MF . Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 2007; 317: 369–372.

    Article  CAS  PubMed  Google Scholar 

  37. Convit A . Links between cognitive impairment in insulin resistance: an explanatory model. Neurobiol Aging 2005; 26 (Suppl 1): 31–35.

    Article  PubMed  Google Scholar 

  38. Craft S . Insulin resistance and Alzheimer's disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 2007; 4: 147–152.

    Article  CAS  PubMed  Google Scholar 

  39. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697, 643.

    Article  CAS  PubMed  Google Scholar 

  40. Liu Z, Zhang YW, Chang YS, Fang FD . The role of cytoskeleton in glucose regulation. Biochemistry (Mosc) 2006; 71: 476–480.

    Article  CAS  Google Scholar 

  41. Magistretti PJ . Neuron–glia metabolic coupling and plasticity. J Exp Biol 2006; 209 (Part 12): 2304–2311.

    Article  CAS  PubMed  Google Scholar 

  42. Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G et al. Identification of proteomic changes during differentiation of adult mouse subventricular zone progenitor cells. Stem Cells Dev 2007; 16: 143–165.

    Article  CAS  PubMed  Google Scholar 

  43. Stone SW, Faraone SV, Su J, Tarbox SI, Van Eerdewegh P, Tsuang MT . Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Am J Med Genet B Neuropsychiatr Genet 2004; 127B: 5–10.

    Article  PubMed  Google Scholar 

  44. Dwyer DS, Bradley RJ, Kablinger AS, Freeman III AM . Glucose metabolism in relation to schizophrenia and antipsychotic drug treatment. Ann Clin Psychiatry 2001; 13: 103–113.

    Article  CAS  PubMed  Google Scholar 

  45. Zabel C, Andreew A, Mao L, Hartl D . Protein expression overlap: more important than which proteins change in expression? Expert Rev Proteomics 2008; 5: 187–205.

    Article  CAS  PubMed  Google Scholar 

  46. Pancholi V . Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 2001; 58: 902–920.

    Article  CAS  PubMed  Google Scholar 

  47. MĂ¼ller N, Schwarz MJ . [Immunology in schizophrenic disorders]. Nervenarzt 2007; 78: 253–256, 258–260, 262–263.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all volunteer patients and control blood donors. We also thank all members of the Bahn laboratory for helpful discussions. We especially thank Keith Burling from NIHR Cambridge Biomedical Research Centre, Core Biochemistry Assay Laboratory, Addenbrooke's Hospital for performing the insulin/glucose assays. This research was supported by Stanley Medical Research Institute (SMRI). MH was supported by the Cambridge European Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Bahn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herberth, M., Koethe, D., Cheng, T. et al. Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol Psychiatry 16, 848–859 (2011). https://doi.org/10.1038/mp.2010.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.71

Keywords

This article is cited by

Search

Quick links