Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

Lineage-specific STAT5 target gene activation in hematopoietic progenitor cells predicts the FLT3+-mediated leukemic phenotype

Abstract

Mutations that activate FMS-like tyrosine kinase 3 (FLT3) are frequent occurrences in acute myeloid leukemia. Two distinct types of mutations have been described: internal duplication of the juxtamembranous domain (ITD) and point mutations of the tyrosine kinase domain (TKD). Although both mutations lead to constitutive FLT3 signaling, only FLT3-ITD strongly activates signal transducer and activator of transcription 5 (STAT5). In a murine transplantation model, FLT3-ITD induces a myeloproliferative neoplasm, whereas FLT3-TKD leads to a lymphoid malignancy with significantly longer latency. Here we report that the presence of STAT5 is critical for the development of a myeloproliferative disease by FLT3-ITD in mice. Deletion of Stat5 in FLT3-ITD-induced leukemogenesis leads not only to a significantly longer survival (82 vs 27 days) of the diseased mice, but also to an immunophenotype switch with expansion of the lymphoid cell compartment. Interestingly, we were able to show differential STAT5 activation in FLT3-ITD+ myeloid and lymphoid murine progenitors. STAT5 target genes such as Oncostatin M were highly expressed in FLT3-ITD+ myeloid but not in FLT3-ITD+ lymphoid progenitor cells. Strikingly, FLT3-TKD expression in combination with Oncostatin M is sufficient to reverse the phenotype to a myeloproliferative disease in FLT3-TKD mice. Thus, lineage-specific STAT5 activation in hematopoietic progenitor cells predicts the FLT3+-mediated leukemic phenotype in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.

    Article  PubMed  Google Scholar 

  2. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012; 485: 260–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    CAS  PubMed  Google Scholar 

  4. Lemmon MA, Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  6. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  8. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    Article  CAS  PubMed  Google Scholar 

  9. Choudhary C, Schwable J, Brandts C, Tickenbrock L, Sargin B, Kindler T et al. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 2005; 106: 265–273.

    Article  CAS  PubMed  Google Scholar 

  10. Grundler R, Miething C, Thiede C, Peschel C, Duyster J . FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105: 4792–4799.

    Article  CAS  PubMed  Google Scholar 

  11. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318.

    Article  CAS  PubMed  Google Scholar 

  12. Birkenkamp KU, Geugien M, Lemmink HH, Kruijer W, Vellenga E . Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia 2001; 15: 1923–1931.

    Article  CAS  PubMed  Google Scholar 

  13. Murata K, Kumagai H, Kawashima T, Tamitsu K, Irie M, Nakajima H et al. Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active Fms-like tyrosine kinase 3 (FLT3). J Biol Chem 2003; 278: 32892–32898.

    Article  CAS  PubMed  Google Scholar 

  14. Basham B, Sathe M, Grein J, McClanahan T, D'Andrea A, Lees E et al. In vivo identification of novel STAT5 target genes. Nucleic Acids Res 2008; 36: 3802–3818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lord JD, McIntosh BC, Greenberg PD, Nelson BH . The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. J Immunol 2000; 164: 2533–2541.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshimura A, Ichihara M, Kinjyo I, Moriyama M, Copeland NG, Gilbert DJ et al. Mouse oncostatin M: an immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway. EMBO J 1996; 15: 1055–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zarling JM, Shoyab M, Marquardt H, Hanson MB, Lioubin MN, Todaro GJ . Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci USA 1986; 83: 9739–9743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miles SA, Martinez-Maza O, Rezai A, Magpantay L, Kishimoto T, Nakamura S et al. Oncostatin M as a potent mitogen for AIDS-Kaposi's sarcoma-derived cells. Science 1992; 255: 1432–1434.

    Article  CAS  PubMed  Google Scholar 

  19. Vasse M, Pourtau J, Trochon V, Muraine M, Vannier JP, Lu H et al. Oncostatin M induces angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 1999; 19: 1835–1842.

    Article  CAS  PubMed  Google Scholar 

  20. Scaffidi AK, Mutsaers SE, Moodley YP, McAnulty RJ, Laurent GJ, Thompson PJ et al. Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts. Br J Pharmacol 2002; 136: 793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leischner H, Albers C, Grundler R, Razumovskaya E, Spiekermann K, Bohlander S et al. SRC is a signaling mediator in FLT3-ITD- but not in FLT3-TKD-positive AML. Blood 2012; 119: 4026–4033.

    Article  CAS  PubMed  Google Scholar 

  22. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004; 24: 8037–8047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    Article  CAS  PubMed  Google Scholar 

  24. Miething C, Grundler R, Fend F, Hoepfl J, Mugler C, von Schilling C et al. The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) induces two distinct malignant phenotypes in a murine retroviral transplantation model. Oncogene 2003; 22: 4642–4647.

    Article  CAS  PubMed  Google Scholar 

  25. Choudhary C, Brandts C, Schwable J, Tickenbrock L, Sargin B, Ueker A et al. Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood 2007; 110: 370–374.

    Article  CAS  PubMed  Google Scholar 

  26. Rocnik JL, Okabe R, Yu JC, Lee BH, Giese N, Schenkein DP et al. Roles of tyrosine 589 and 591 in STAT5 activation and transformation mediated by FLT3-ITD. Blood 2006; 108: 1339–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kondo M, Weissman IL, Akashi K . Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997; 91: 661–672.

    Article  CAS  PubMed  Google Scholar 

  28. Akashi K, Traver D, Miyamoto T, Weissman IL . A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404: 193–197.

    Article  CAS  PubMed  Google Scholar 

  29. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol 2010; 28: 2529–2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gutierrez NC, Lopez-Perez R, Hernandez JM, Isidro I, Gonzalez B, Delgado M et al. Gene expression profile reveals deregulation of genes with relevant functions in the different subclasses of acute myeloid leukemia. Leukemia 2005; 19: 402–409.

    Article  CAS  PubMed  Google Scholar 

  31. Schwaller J, Parganas E, Wang D, Cain D, Aster JC, Williams IR et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 2000; 6: 693–704.

    Article  CAS  PubMed  Google Scholar 

  32. Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA et al. Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. EMBO Mol Med 2010; 2: 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan D, Hutchison RE, Mohi G . Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood 2012; 119: 3539–3549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood 2012; 119: 3550–3560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  36. Steudel C, Wermke M, Schaich M, Schakel U, Illmer T, Ehninger G et al. Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer 2003; 37: 237–251.

    Article  CAS  PubMed  Google Scholar 

  37. van Boxel-Dezaire AH, Rani MR, Stark GR . Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 2006; 25: 361–372.

    Article  CAS  PubMed  Google Scholar 

  38. Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T et al. Identification of a Wnt/Dvl/beta-Catenin –> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 2002; 111: 673–685.

    Article  CAS  PubMed  Google Scholar 

  39. Christensen JL, Weissman IL . Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA 2001; 98: 14541–14546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang L, Bryder D, Adolfsson J, Nygren J, Mansson R, Sigvardsson M et al. Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 2005; 105: 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  41. Buza-Vidas N, Woll P, Hultquist A, Duarte S, Lutteropp M, Bouriez-Jones T et al. FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood 2011; 118: 1544–1548.

    Article  CAS  PubMed  Google Scholar 

  42. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 2005; 121: 295–306.

    Article  CAS  PubMed  Google Scholar 

  43. Vaux DL, Cory S, Adams JM . Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Article  CAS  PubMed  Google Scholar 

  44. Mateyak MK, Obaya AJ, Adachi S, Sedivy JM . Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 1997; 8: 1039–1048.

    CAS  PubMed  Google Scholar 

  45. Mead AJ, Kharazi S, Atkinson D, Macaulay I, Pecquet C, Loughran S et al. FLT3-ITDs instruct a myeloid differentiation and transformation bias in lymphomyeloid multipotent progenitors. Cell Rep 2013; 3: 1766–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee BH, Tothova Z, Levine RL, Anderson K, Buza-Vidas N, Cullen DE et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007; 12: 367–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li L, Piloto O, Nguyen HB, Greenberg K, Takamiya K, Racke F et al. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood 2008; 111: 3849–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li L, Bailey E, Greenblatt S, Huso D, Small D . Loss of the wild-type allele contributes to myeloid expansion and disease aggressiveness in FLT3/ITD knockin mice. Blood 2011; 118: 4935–4945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim KT, Baird K, Davis S, Piloto O, Levis M, Li L et al. Constitutive Fms-like tyrosine kinase 3 activation results in specific changes in gene expression in myeloid leukaemic cells. Br J Haematol 2007; 138: 603–615.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Follo for help with FACS sorting and G Schäfer for technical assistance. This work was supported by a DFG grant (FOR 2033 to JD and TAM). LH was supported by the Intramural Research Program (IRP) of the National Institutes of Diabetes, Digestive and Kidney Disease, NIH (Bethesda, MD, USA). ALI was supported by a Research grant from University Clinic Freiburg and from the government Baden-Württemberg (BSL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A L Illert or J Duyster.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, T., Grundler, R., Istvanffy, R. et al. Lineage-specific STAT5 target gene activation in hematopoietic progenitor cells predicts the FLT3+-mediated leukemic phenotype. Leukemia 30, 1725–1733 (2016). https://doi.org/10.1038/leu.2016.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.72

This article is cited by

Search

Quick links