Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanisms of resistance

F604S exchange in FIP1L1-PDGFRA enhances FIP1L1-PDGFRA protein stability via SHP-2 and SRC: a novel mode of kinase inhibitor resistance

Abstract

FIP1L1-PDGFRA is a constitutively activated kinase described in chronic eosinophilic leukemia (CEL) and hypereosinophilic syndrome (HES). Imatinib is clinically active in FIP1L1-PDGFRA-positive diseases. Using in vitro screening to identify imatinib-resistant mutations, we frequently detected a Phe to Ser exchange at position 604 (F604S) of FIP1L1-PDGFRA alone or in combination with other exchanges. Surprisingly, FIP1L1-PDGFRA/F604S did not increase the biochemical or cellular IC50 value of imatinib when compared with unmutated FIP1L1-PDGFRA. However, FIP1L1-PDGFRA/F604S more efficiently induced growth factor independence in cell lines and primary mouse bone marrow cells. Pulse chase analysis revealed that the F604S exchange strongly stabilized FIP1L1-PDGFRA/F604S. The F604S mutation creates a binding site for the phosphatase domain of SHP-2, leading to lower autophosphorylation of FIP1L1-PDGFRA/F604S. This is associated with a reduced activation of SRC and CBL by FIP1L1-PDGFRA/F604S compared with the unmutated oncogene. As SRC inhibition and knockdown resulted in FIP1L1-PDGFRA stabilization, this explains the extended half-life of FIP1L1-PDGFRA/F604S. Interestingly, FIP1L1-PDGFRA/L629P, a recently identified mutation in an imatinib-resistant CEL patient, also showed protein stabilization similar to that observed with FIP1L1-PDGFRA/F604S. Therefore, resistance mutations in FIP1L1-PDGFRA that do not interfere with drug binding but rather increase target protein stability seem to be one of the drug-resistance mechanisms in FIP1L1-PDGFRA-positive disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gotlib J, Cools J, Malone JM 3rd, Schrier SL, Gilliland DG, Coutre SE et al. The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 2004; 103: 2879–2891.

    Article  CAS  Google Scholar 

  2. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348: 1201–1214.

    Article  CAS  Google Scholar 

  3. Baccarani M, Cilloni D, Rondoni M, Ottaviani E, Messa F, Merante S et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 2007; 92: 1173–1179.

    Article  CAS  Google Scholar 

  4. Pardanani A, Brockman SR, Paternoster SF, Flynn HC, Ketterling RP, Lasho TL et al. FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood 2004; 104: 3038–3045.

    Article  CAS  Google Scholar 

  5. Pardanani A, Ketterling RP, Li CY, Patnaik MM, Wolanskyj AP, Elliott MA et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res 2006; 30: 965–970.

    Article  CAS  Google Scholar 

  6. Gotlib J, Cools J . Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 2008; 22: 1999–2010.

    Article  CAS  Google Scholar 

  7. Erben P, Gosenca D, Muller MC, Reinhard J, Score J, Del Valle F et al. Screening for diverse PDGFRA or PDGFRB fusion genes is facilitated by generic quantitative reverse transcriptase polymerase chain reaction analysis. Haematologica 2010; 95: 738–744.

    Article  CAS  Google Scholar 

  8. Elling C, Erben P, Walz C, Frickenhaus M, Schemionek M, Stehling M et al. Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood 2011; 117: 2935–2943.

    Article  CAS  Google Scholar 

  9. Buitenhuis M, Verhagen LP, Cools J, Coffer PJ . Molecular mechanisms underlying FIP1L1-PDGFRA-mediated myeloproliferation. Cancer Res 2007; 67: 3759–3766.

    Article  CAS  Google Scholar 

  10. Cools J, Stover EH, Boulton CL, Gotlib J, Legare RD, Amaral SM et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 2003; 3: 459–469.

    Article  CAS  Google Scholar 

  11. Yamada Y, Rothenberg ME, Lee AW, Akei HS, Brandt EB, Williams DA et al. The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease. Blood 2006; 107: 4071–4079.

    Article  CAS  Google Scholar 

  12. Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996; 16: 4107–4116.

    Article  CAS  Google Scholar 

  13. Stover EH, Chen J, Folens C, Lee BH, Mentens N, Marynen P et al. Activation of FIP1L1-PDGFRalpha requires disruption of the juxtamembrane domain of PDGFRalpha and is FIP1L1-independent. Proc Natl Acad Sci USA 2006; 103: 8078–8083.

    Article  CAS  Google Scholar 

  14. Ohnishi H, Kandabashi K, Maeda Y, Kawamura M, Watanabe T . Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T6741 mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol 2006; 134: 547–549.

    Article  CAS  Google Scholar 

  15. von Bubnoff N, Sandherr M, Schlimok G, Andreesen R, Peschel C, Duyster J et al. Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 2005; 19: 286–287.

    Article  CAS  Google Scholar 

  16. Lierman E, Michaux L, Beullens E, Pierre P, Marynen P, Cools J et al. FIP1L1-PDGFRalpha D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia 2009; 23: 845–851.

    Article  CAS  Google Scholar 

  17. von Bubnoff N, Gorantla SP, Engh RA, Oliveira TM, Thone S, Aberg E et al. The low frequency of clinical resistance to PDGFR inhibitors in myeloid neoplasms with abnormalities of PDGFRA might be related to the limited repertoire of possible PDGFRA kinase domain mutations in vitro. Oncogene 2011; 30: 933–943.

    Article  CAS  Google Scholar 

  18. Bai RY, Jahn T, Schrem S, Munzert G, Weidner KM, Wang JY et al. The SH2-containing adapter protein GRB10 interacts with BCR-ABL. Oncogene 1998; 17: 941–948.

    Article  CAS  Google Scholar 

  19. Jahn T, Seipel P, Urschel S, Peschel C, Duyster J . Role for the adaptor protein Grb10 in the activation of Akt. Mol Cell Biology 2002; 22: 979–991.

    Article  CAS  Google Scholar 

  20. Grundler R, Miething C, Thiede C, Peschel C, Duyster J . FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105: 4792–4799.

    Article  CAS  Google Scholar 

  21. Duyster J, Baskaran R, Wang JY . Src homology 2 domain as a specificity determinant in the c-Abl-mediated tyrosine phosphorylation of the RNA polymerase II carboxyl-terminal repeated domain. Proc Natl Acad Sci USA 1995; 92: 1555–1559.

    Article  CAS  Google Scholar 

  22. Rosenkranz S, Ikuno Y, Leong FL, Klinghoffer RA, Miyake S, Band H et al. Src family kinases negatively regulate platelet-derived growth factor alpha receptor-dependent signaling and disease progression. J Biol Chem 2000; 275: 9620–9627.

    Article  CAS  Google Scholar 

  23. Avrov K, Kazlauskas A . The role of c-Src in platelet-derived growth factor alpha receptor internalization. Exp Cell Res 2003; 291: 426–434.

    Article  CAS  Google Scholar 

  24. Vantler M, Huntgeburth M, Caglayan E, Ten Freyhaus H, Schnabel P, Rosenkranz S et al. PI3-kinase/Akt-dependent antiapoptotic signaling by the PDGF alpha receptor is negatively regulated by Src family kinases. FEBS Lett 2006; 580: 6769–6776.

    Article  CAS  Google Scholar 

  25. Miyake S, Mullane-Robinson KP, Lill NL, Douillard P, Band H . Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation. A critical role for Cbl tyrosine kinase-binding domain. J Biol Chem 1999; 274: 16619–16628.

    Article  CAS  Google Scholar 

  26. Bazenet CE, Gelderloos JA, Kazlauskas A . Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation. Mol Cell Biol 1996; 16: 6926–6936.

    Article  CAS  Google Scholar 

  27. Salemi S, Yousefi S, Simon D, Schmid I, Moretti L, Scapozza L et al. A novel FIP1L1-PDGFRA mutant destabilizing the inactive conformation of the kinase domain in chronic eosinophilic leukemia/hypereosinophilic syndrome. Allergy 2009; 64: 913–918.

    Article  CAS  Google Scholar 

  28. Sattler M, Pride YB, Quinnan LR, Verma S, Malouf NA, Husson H et al. Differential expression and signaling of CBL and CBL-B in BCR/ABL transformed cells. Oncogene 2002; 21: 1423–1433.

    Article  CAS  Google Scholar 

  29. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE . Crystal structure of the tyrosine phosphatase SHP-2. Cell 1998; 92: 441–450.

    Article  CAS  Google Scholar 

  30. Lu W, Gong D, Bar-Sagi D, Cole PA . Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol cell 2001; 8: 759–769.

    Article  CAS  Google Scholar 

  31. Kazlauskas A, Feng GS, Pawson T, Valius M . The 64-kDa protein that associates with the platelet-derived growth factor receptor beta subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proc Natl Acad Sci USA 1993; 90: 6939–6943.

    Article  CAS  Google Scholar 

  32. Maegawa H, Ugi S, Ishibashi O, Tachikawa-Ide R, Takahara N, Tanaka Y et al. Src homology 2 domains of protein tyrosine phosphatase are phosphorylated by insulin receptor kinase and bind to the COOH-terminus of insulin receptors in vitro. Biochem Biophys Res Commun 1993; 194: 208–214.

    Article  CAS  Google Scholar 

  33. Uchida T, Matozaki T, Noguchi T, Yamao T, Horita K, Suzuki T et al. Insulin stimulates the phosphorylation of Tyr538 and the catalytic activity of PTP1C, a protein tyrosine phosphatase with Src homology-2 domains. J Biol Chem 1994; 269: 12220–12228.

    CAS  PubMed  Google Scholar 

  34. Azam M, Latek RR, Daley GQ . Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003; 112: 831–843.

    Article  CAS  Google Scholar 

  35. Metzgeroth G, Schwaab J, Gosenca D, Fabarius A, Haferlach C, Hochhaus A et al. Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFR rearrangements in blast phase. Leukemia 2013; 27: 2254–2256.

    Article  CAS  Google Scholar 

  36. Metzgeroth G, Erben P, Martin H, Mousset S, Teichmann M, Walz C et al. Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation. Leukemia 2012; 26: 162–164.

    Article  CAS  Google Scholar 

  37. Metzgeroth G, Walz C, Erben P, Popp H, Schmitt-Graeff A, Haferlach C et al. Safety and efficacy of imatinib in chronic eosinophilic leukaemia and hypereosinophilic syndrome: a phase-II study. Br J Haematol 2008; 143: 707–715.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JD is supported by a grant from the Jose Carreras Leukämie-Stiftung (DJCLS R 14/22). We thank Dr N. Cross, Wessex Regional Genetics Laboratory, Salisbury, UK, for providing information about drug-resistant FP-positive patients.

Author Contributions

SPG: Conceived the study, designed and performed the experiments, analyzed data and wrote the manuscript. KZ, CY, ALI, NB, AR: analyzed the data. JD: Conceived the study, analyzed data and wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Duyster.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorantla, S., Zirlik, K., Reiter, A. et al. F604S exchange in FIP1L1-PDGFRA enhances FIP1L1-PDGFRA protein stability via SHP-2 and SRC: a novel mode of kinase inhibitor resistance. Leukemia 29, 1763–1770 (2015). https://doi.org/10.1038/leu.2015.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.70

This article is cited by

Search

Quick links