Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease

Abstract

We studied the utility and clinical relevance of RUNX1 (runt-related transcription factor 1) mutations and their application as residual disease detection markers using next-generation deep-sequencing. Mutation screening was prospectively performed in 814 acute myeloid leukemia patients. At diagnosis, 211/814 (25.9%) patients harbored mutations with a median clone size of 39% (range: 2–96%). Furthermore, in 57 patients paired samples from diagnosis and relapse were analyzed. In 47/57 (82.5%) cases the same alterations detected at diagnosis were present at relapse, whereas in 1/57 (1.8%) cases the mutation from the diagnostic sample was no longer detectable. Discrepancies were observed in 9/57 (15.8%) cases, also including the occurrence of novel RUNX1 mutations not restricted to those regions affected at diagnosis. Moreover, in 103 patients the prognostic impact of residual levels of RUNX1 mutations during complete remission was studied. Separation of patients according to median residual mutation burden into ‘good responders’ and ‘poor responders’ (median: 3.61%; range: 0.03–48.0%) resulted in significant differences of both event-free (median 21.0 vs 5.7 months, P<0.001) and overall survival (OS; median 56.9 vs 32.0 months, P=0.002). In conclusion, deep-sequencing revealed that RUNX1 mutations qualify as patient-specific markers for individualized disease monitoring. The measurement of mutation load may refine the assignment into distinct risk categories and treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999; 93: 1817–1824.

    CAS  PubMed  Google Scholar 

  2. Dicker F, Haferlach C, Sundermann J, Wendland N, Weiss T, Kern W et al. Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 2010; 24: 1528–1532.

    Article  CAS  PubMed  Google Scholar 

  3. Kohlmann A, Grossmann V, Harbich S, Dicker F, Alpermann T, Nadarajah N et al. Monitoring of minimal residual disease using next-generation deep-sequencing in 460 acute myeloid leukemia cases identifies RUNX1 mutated patients with resistant disease. Blood 2011; 118: 747a.

    Article  Google Scholar 

  4. Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 2011; 117: 2348–2357.

    Article  CAS  PubMed  Google Scholar 

  5. Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Rock J, Paschka P et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol 2011; 29: 1364–1372.

    Article  PubMed  Google Scholar 

  6. Grimwade D, Vyas P, Freeman S . Assessment of minimal residual disease in acute myeloid leukemia. Curr Opin Oncol 2010; 22: 656–663.

    Article  PubMed  Google Scholar 

  7. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  8. Buccisano F, Maurillo L, Del Principe MI, Del PG, Sconocchia G, Lo-Coco F et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 2012; 119: 332–341.

    Article  CAS  PubMed  Google Scholar 

  9. Ommen HB, Schnittger S, Jovanovic JV, Ommen IB, Hasle H, Ostergaard M et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood 2010; 115: 198–205.

    Article  CAS  PubMed  Google Scholar 

  10. Schnittger S, Kern W, Tschulik C, Weiss T, Dicker F, Falini B et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood 2009; 114: 2220–2231.

    Article  CAS  PubMed  Google Scholar 

  11. Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009; 114: 5352–5361.

    Article  CAS  PubMed  Google Scholar 

  12. Roumier C, Eclache V, Imbert M, Davi F, MacIntyre E, Garand R et al. M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 2003; 101: 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  13. Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T . Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 2008; 22: 1539–1541.

    Article  CAS  PubMed  Google Scholar 

  14. Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 2012; 119: 2114–2121.

    Article  PubMed  Google Scholar 

  15. Delhommeau F, Dupont S, Della VV, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  PubMed  Google Scholar 

  16. Metzeler KH, Maharry K, Radmacher MD, Mrozek K, Margeson D, Becker H et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2011; 29: 1373–1381.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 2012; 26: 934–942.

    Article  CAS  PubMed  Google Scholar 

  18. Metzeler KH, Becker H, Maharry K, Radmacher MD, Kohlschmidt J, Mrozek K et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood 2011; 118: 6920–6929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 2013; 27: 82–91.

    Article  CAS  PubMed  Google Scholar 

  20. Kohlmann A, Grossmann V, Nadarajah N, Haferlach T . Next-generation sequencing - feasibility and practicality in haematology. Br J Haematol 2013; 160: 736–753.

    Article  CAS  PubMed  Google Scholar 

  21. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  PubMed Central  Google Scholar 

  23. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43: 309–315.

    Article  CAS  PubMed  Google Scholar 

  26. Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 2011; 118: 6153–6163.

    Article  CAS  PubMed  Google Scholar 

  27. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kohlmann A, Grossmann V, Haferlach T . Integration of next-generation sequencing into clinical practice: are we there yet? Semin Oncol 2012; 39: 26–36.

    Article  CAS  PubMed  Google Scholar 

  29. Mendler JH, Maharry K, Radmacher MD, Mrozek K, Becker H, Metzeler KH et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol 2012; 30: 3109–3118.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol 2010; 28: 3858–3865.

    Article  CAS  PubMed  Google Scholar 

  31. Kohlmann A, Klein HU, Weissmann S, Bresolin S, Chaplin T, Cuppens H et al. The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia 2011; 25: 1840–1848.

    Article  CAS  PubMed  Google Scholar 

  32. Thol F, Kolking B, Damm F, Reinhardt K, Klusmann JH, Reinhardt D et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer 2012; 51: 689–695.

    Article  CAS  PubMed  Google Scholar 

  33. Grossmann V, Kern W, Harbich S, Alpermann T, Jeromin S, Schnittger S et al. Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia. Haematologica 2011; 96: 1874–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klein HU, Bartenhagen C, Kohlmann A, Grossmann V, Ruckert C, Haferlach T et al. R453Plus1Toolbox: an R/Bioconductor package for analyzing Roche 454 Sequencing data. Bioinformatics 2011; 27: 1162–1163.

    Article  CAS  PubMed  Google Scholar 

  35. Grossmann V, Roller A, Klein HU, Weissmann S, Kern W, Haferlach C et al. Robustness of amplicon deep sequencing underlines its utility in clinical applications. J Mol Diagn 2013; 15: 473–484.

    Article  CAS  PubMed  Google Scholar 

  36. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2012; 40: D13–D25.

    Article  CAS  PubMed  Google Scholar 

  37. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D . MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010; 7: 575–576.

    Article  CAS  PubMed  Google Scholar 

  38. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar P, Henikoff S, Ng PC . Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  40. Mangan JK, Speck NA . RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit Rev Oncog 2011; 16: 77–91.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grossmann V, Schnittger S, Kohlmann A, Eder C, Roller A, Dicker F et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood 2012; 120: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  42. Appelbaum FR . Incorporating hematopoietic cell transplantation (HCT) into the management of adults aged under 60 years with acute myeloid leukemia (AML). Best Pract Res Clin Haematol 2008; 21: 85–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Kohlmann.

Ethics declarations

Competing interests

RUNX1 oligonucleotide primer plates were provided as part of the IRON-II study by Roche Diagnostics GmbH, Penzberg, Germany. WK, CH, SuS and TH are part-owners of the MLL Munich Leukemia Laboratory GmbH. AK, NN, VG, TA, SoS, FD and AR are employed by MLL Munich Leukemia Laboratory. AK has received honoraria from Roche Diagnostics.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlmann, A., Nadarajah, N., Alpermann, T. et al. Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease. Leukemia 28, 129–137 (2014). https://doi.org/10.1038/leu.2013.239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.239

Keywords

This article is cited by

Search

Quick links