Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomics, Gene Therapy and Proteomics

Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety

Abstract

T lymphocytes expressing a chimeric antigen receptor (CAR) targeting the CD19 antigen (CAR.19) may be of value for the therapy of B-cell malignancies. Because the in vivo survival, expansion and anti-lymphoma activity of CAR.19+ T cells remain suboptimal even when the CAR contains a CD28 costimulatory endodomain, we generated a novel construct that also incorporates the interleukin-15 (IL-15) gene and an inducible caspase-9-based suicide gene (iC9/CAR.19/IL-15). We found that compared with CAR.19+ T cells, iC9/CAR.19/IL-15+ T cells had: (1) greater numeric expansion upon antigen stimulation (10-fold greater expansion in vitro, and 3- to 15-fold greater expansion in vivo) and reduced cell death rate (Annexin-V+/7-AAD+ cells 10±6% for iC9/CAR.19/IL-15+ T cells and 32±19% for CAR.19+ T cells); (2) reduced expression of the programmed death 1 (PD-1) receptor upon antigen stimulation (PD-1+ cells <15% for iC9/CAR.19/IL-15+ T cells versus >40% for CAR.19+ T cells); and (3) improved antitumor effects in vivo (from 4.7- to 5.4-fold reduced tumor growth). In addition, iC9/CAR.19/IL-15+ T cells were efficiently eliminated upon pharmacologic activation of the suicide gene. In summary, this strategy safely increases the anti-lymphoma/leukemia effects of CAR.19-redirected T lymphocytes and may be a useful approach for treatment of patients with B-cell malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008; 112: 2261–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hombach A, Heuser C, Sircar R, Tillmann T, Diehl V, Pohl C et al. Characterization of a chimeric T-cell receptor with specificity for the Hodgkin's lymphoma-associated CD30 antigen. J Immunother 1999; 22: 473–480.

    Article  CAS  PubMed  Google Scholar 

  3. Sadelain M, Brentjens R, Riviere I . The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21: 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Savoldo B, Rooney CM, Di Stasi A, Abken H, Hombach A, Foster AE et al. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30{zeta} artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 2007; 110: 2620–2630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dotti G, Savoldo B, Brenner M . Fifteen years of gene therapy based on chimeric antigen receptors: ‘are we nearly there yet?’. Hum Gene Ther 2009; 20: 1229–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eshhar Z, Waks T, Gross G, Schindler DG . Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90: 720–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooper LJ, Topp MS, Serrano LM, Gonzalez S, Chang WC, Naranjo A et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood 2003; 101: 1637–1644.

    Article  CAS  PubMed  Google Scholar 

  8. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003; 9: 279–286.

    Article  CAS  PubMed  Google Scholar 

  9. Jensen M, Tan G, Forman S, Wu AM, Raubitschek A . CD20 is a molecular target for scFvFc:zeta receptor redirected T cells: implications for cellular immunotherapy of CD20+ malignancy. Biol Blood Marrow Transplant 1998; 4: 75–83.

    Article  CAS  PubMed  Google Scholar 

  10. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 2006; 108: 3890–3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brentjens R, RIHDTCNYSJLJYRSESM. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I trial. Mole Ther 2010; 18: 666–668.

    Article  CAS  Google Scholar 

  12. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12 (20 Pt 1): 6106–6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14: 1264–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 2006; 66: 10995–11004.

    Article  CAS  PubMed  Google Scholar 

  15. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M . Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 2002; 20: 70–75.

    Article  CAS  PubMed  Google Scholar 

  16. Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004; 18: 676–684.

    Article  CAS  PubMed  Google Scholar 

  17. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009; 106: 3360–3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tammana S, Huang X, Wong M, Milone MC, Ma L, Levine BL et al. 4-1BB and CD28 Signaling plays a synergistic role in redirecting umbilical cord blood t cells against B-cell malignancies. Hum Gene Ther 2010; 21: 75–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 2009; 183: 5563–5574.

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007; 18: 712–725.

    Article  CAS  PubMed  Google Scholar 

  22. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK . A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005; 12: 933–941.

    Article  CAS  PubMed  Google Scholar 

  23. Ma A, Koka R, Burkett P . Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 2006; 24: 657–679.

    Article  CAS  PubMed  Google Scholar 

  24. Waldmann TA, Dubois S, Tagaya Y . Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001; 14: 105–110.

    CAS  PubMed  Google Scholar 

  25. Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K, Zhou J et al. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 2007; 109: 5168–5177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK et al. An inducible caspase 9 safety switch for T-cell therapy. Blood 2005; 105: 4247–4254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quintarelli C, Vera JF, Savoldo B, Giordano Attianese GM, Pule M, Foster AE et al. Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 2007; 110: 2793–2802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossig C, Brenner MK . Chimeric T-cell receptors for the targeting of cancer cells. Acta Haematol 2003; 110: 154–159.

    Article  PubMed  Google Scholar 

  29. Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 2009; 113: 6392–6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim YJ, Dubey P, Ray P, Gambhir SS, Witte ON . Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol 2004; 6: 331–340.

    Article  PubMed  Google Scholar 

  31. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006; 443: 350–354.

    Article  CAS  PubMed  Google Scholar 

  32. Dudley ME, Rosenberg SA . Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 2003; 3: 666–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finney HM, Lawson AD, Bebbington CR, Weir AN . Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 1998; 161: 2791–2797.

    CAS  PubMed  Google Scholar 

  34. Huang X, Guo H, Kang J, Choi S, Zhou TC, Tammana S et al. Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther 2008; 16: 580–589.

    Article  CAS  PubMed  Google Scholar 

  35. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 2004; 101: 1969–1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roychowdhury S, May Jr KF, Tzou KS, Lin T, Bhatt D, Freud AG et al. Failed adoptive immunotherapy with tumor-specific T cells: reversal with low-dose interleukin 15 but not low-dose interleukin 2. Cancer Res 2004; 64: 8062–8067.

    Article  CAS  PubMed  Google Scholar 

  38. Hsu C, Hughes MS, Zheng Z, Bray RB, Rosenberg SA, Morgan RA . Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 2005; 175: 7226–7234.

    Article  CAS  PubMed  Google Scholar 

  39. Urbani S, Amadei B, Tola D, Massari M, Schivazappa S, Missale G et al. PD-1 expression in acute hepatitis C Virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol 2006; 80: 11398–11403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keir ME, Butte MJ, Freeman GJ, Sharpe AH . PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677–704.

    Article  CAS  PubMed  Google Scholar 

  41. Mumprecht S, Schurch C, Schwaller J, Solenthaler M, Ochsenbein AF . Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood 2009; 114: 1528–1536.

    Article  CAS  PubMed  Google Scholar 

  42. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009; 114: 1537–1544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang L, Gajewski TF, Kline J . PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 2009; 114: 1545–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003; 9: 562–567.

    Article  CAS  PubMed  Google Scholar 

  45. Berger C, Berger M, Hackman RC, Gough M, Elliott C, Jensen MC et al. Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood 2009; 114: 2417–2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME . Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8: 299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23: 2346–2357.

    Article  CAS  PubMed  Google Scholar 

  48. Zou W . Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263–274.

    Article  CAS  PubMed  Google Scholar 

  49. Ben AM, Belhadj HN, Moes N, Buyse S, Abdeladhim M, Louzir H et al. IL-15 renders conventional lymphocytes resistant to suppressive functions of regulatory T cells through activation of the phosphatidylinositol 3-kinase pathway. J Immunol 2009; 182: 6763–6770.

    Article  Google Scholar 

  50. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006; 24: e20–e22.

    Article  PubMed  Google Scholar 

  51. Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK . Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant 2007; 13: 913–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part from Leukemia and Lymphoma Society Specialized Center of Research (SCOR; Grant no. 7018), the NIH Grants PO1CA94237, P50CA126752 and RO1CA131027, Leukemia and Lymphoma Society Translational Research grants, Doris Duke Charitable Foundation/Clinical Scientist development award and CLL Global Research Foundation.

Author contributions. VH, BS, CQ, MZ and JV performed the experiments. AM and BS performed the animal experiments. GD, BS and VH designed the research and analyzed the data. VH, BS and GD wrote the paper. HEH, CMR and MKB critically reviewed the paper. All authors approved the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Dotti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyos, V., Savoldo, B., Quintarelli, C. et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24, 1160–1170 (2010). https://doi.org/10.1038/leu.2010.75

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.75

Keywords

This article is cited by

Search

Quick links