Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The complete evaluation of erythrocytosis: congenital and acquired

Abstract

The approach to a patient with erythrocytosis is greatly simplified by assessing the clonality of the process upfront. In this regard, there has been a dramatic shift toward genetic testing and away from traditional tests, such as measurement of red cell mass. Clonal erythrocytosis is the diagnostic feature of polycythemia vera (PV) and is almost always associated with a JAK2 mutation (JAK2V617F or exon 12). All other scenarios represent non-clonal erythrocytosis, often referred to as secondary erythrocytosis. Serum erythropoietin (Epo) level is usually normal or elevated in secondary erythrocytosis and subnormal in PV. Therefore, in a patient with acquired erythrocytosis, it is reasonable to begin the diagnostic work-up with peripheral blood JAK2 mutation analysis and serum Epo measurement to distinguish PV from secondary erythrocytosis. Conversely, the patient with life-long erythrocytosis is more likely to suffer from congenital polycythemia and should therefore be evaluated for germline mutations that result in enhanced Epo effect (for example, Epo receptor mutations), altered intracellular oxygen sensing (for example, mutations involving the von Hippel-Lindau tumor suppressor gene) or decreased P50 (for example, high-oxygen-affinity hemoglobinopathy). The order of tests in this instance depends on the clinical scenario and serum Epo level.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hollowell JG, van Assendelft OW, Gunter EW, Lewis BG, Najjar M, Pfeiffer C . Hematological and iron-related analytes—reference data for persons aged 1 year and over: United States, 1988–1994. Vital Health Stat 11 2005; 247: 1–156.

    Google Scholar 

  2. Johansson PL, Safai-Kutti S, Kutti J . An elevated venous haemoglobin concentration cannot be used as a surrogate marker for absolute erythrocytosis: a study of patients with polycythaemia vera and apparent polycythaemia. Br J Haematol 2005; 129: 701–705.

    CAS  PubMed  Google Scholar 

  3. Spivak JL, Silver RT . The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: an alternative proposal. Blood 2008; 112: 231–239.

    CAS  PubMed  Google Scholar 

  4. Silver RT, Bennett JM, Goldman JM, Spivak JL, Tefferi A . The third International Congress on Myeloproliferative and Myelodysplastic Syndromes. Leuk Res 2007; 31: 11–17.

    CAS  PubMed  Google Scholar 

  5. James C, Delhommeau F, Marzac C, Teyssandier I, Couedic JP, Giraudier S et al. Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis. Leukemia 2006; 20: 350–353.

    CAS  PubMed  Google Scholar 

  6. Di Nisio M, Barbui T, Di Gennaro L, Borrelli G, Finazzi G, Landolfi R et al. The haematocrit and platelet target in polycythemia vera. Br J Haematol 2007; 136: 249–259.

    Article  PubMed  Google Scholar 

  7. Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, Hanson CA et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 2007; 110: 1092–1097.

    CAS  PubMed  Google Scholar 

  8. Tefferi A, Vardiman JW . Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.

    Article  CAS  PubMed  Google Scholar 

  9. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA . Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 1998; 7: 205–213.

    CAS  PubMed  Google Scholar 

  10. Huang LE, Arany Z, Livingston DM, Bunn HF . Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 1996; 271: 32253–32259.

    CAS  PubMed  Google Scholar 

  11. Tian H, McKnight SL, Russell DW . Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11: 72–82.

    CAS  PubMed  Google Scholar 

  12. Schofield CJ, Ratcliffe PJ . Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 2004; 5: 343–354.

    CAS  PubMed  Google Scholar 

  13. Scortegagna M, Morris MA, Oktay Y, Bennett M, Garcia JA . The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood 2003; 102: 1634–1640.

    CAS  PubMed  Google Scholar 

  14. Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR, McMullin MF et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med 2008; 358: 162–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–468.

    CAS  PubMed  Google Scholar 

  16. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 2000; 275: 25733–25741.

    CAS  PubMed  Google Scholar 

  17. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL . Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 1996; 271: 17771–17778.

    CAS  PubMed  Google Scholar 

  18. Stolze IP, Tian YM, Appelhoff RJ, Turley H, Wykoff CC, Gleadle JM et al. Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (HIF) in regulating HIF transcriptional target genes. J Biol Chem 2004; 279: 42719–42725.

    CAS  PubMed  Google Scholar 

  19. Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 2005; 105: 659–669.

    CAS  PubMed  Google Scholar 

  20. Constantinescu SN, Ghaffari S, Lodish HF . The erythropoietin receptor: structure, activation and intracellular signal transduction. Trends Endocrinol Metab 1999; 10: 18–23.

    CAS  PubMed  Google Scholar 

  21. Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S . Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 2006; 107: 907–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wormald S, Hilton DJ . Inhibitors of cytokine signal transduction. J Biol Chem 2004; 279: 821–824.

    CAS  PubMed  Google Scholar 

  23. Kile BT, Alexander WS . The suppressors of cytokine signalling (SOCS). Cell Mol Life Sci 2001; 58: 1627–1635.

    CAS  PubMed  Google Scholar 

  24. Gadina M, Hilton D, Johnston JA, Morinobu A, Lighvani A, Zhou YJ et al. Signaling by type I and II cytokine receptors: ten years after. Curr Opin Immunol 2001; 13: 363–373.

    CAS  PubMed  Google Scholar 

  25. Tong W, Zhang J, Lodish HF . Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 2005; 105: 4604–4612.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bunn HF, Forget BG (eds). Hemoglobin: Molecular, Genetic and Clinical Aspects. W.B. Saunders Co.: Philadelphia, 1986, vii, 690p.

    Google Scholar 

  27. Charache S, Weatherall DJ, Clegg JB . Polycythemia associated with a hemoglobinopathy. J Clin Invest 1966; 45: 813–822.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez Fernandez FA, Villegas A, Ropero P, Carreno MD, Anguita E, Polo M et al. Haemoglobinopathies with high oxygen affinity. Experience of Erythropathology Cooperative Spanish Group. Ann Hematol 2009; 88: 235–238.

    CAS  PubMed  Google Scholar 

  29. Rumi E, Passamonti F, Pagano L, Ammirabile M, Arcaini L, Elena C et al. Blood p50 evaluation enhances diagnostic definition of isolated erythrocytosis. J Intern Med 2009; 265: 266–274.

    CAS  PubMed  Google Scholar 

  30. Lichtman MA, Murphy MS, Adamson JW . Detection of mutant hemoglobins with altered affinity for oxygen. A simplified technique. Ann Intern Med 1976; 84: 517–520.

    CAS  PubMed  Google Scholar 

  31. Hoyer JD, Allen SL, Beutler E, Kubik K, West C, Fairbanks VF . Erythrocytosis due to bisphosphoglycerate mutase deficiency with concurrent glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. Am J Hematol 2004; 75: 205–208.

    CAS  PubMed  Google Scholar 

  32. Cartier P, Labie D, Leroux JP, Najman A, Demaugre F . [Familial diphosphoglycerate mutase deficiency: hematological and biochemical study]. Nouv Rev Fr Hematol 1972; 12: 269–287.

    CAS  PubMed  Google Scholar 

  33. Galacteros F, Rosa R, Prehu MO, Najean Y, Calvin MC . [Diphosphoglyceromutase deficiency: new cases associated with erythrocytosis]. Nouv Rev Fr Hematol 1984; 26: 69–74.

    CAS  PubMed  Google Scholar 

  34. do Nascimento TS, Pereira RO, de Mello HL, Costa J . Methemoglobinemia: from diagnosis to treatment. Rev Bras Anestesiol 2008; 58: 657–664, 651–657.

    Google Scholar 

  35. Fermo E, Bianchi P, Vercellati C, Marcello AP, Garatti M, Marangoni O et al. Recessive hereditary methemoglobinemia: two novel mutations in the NADH-cytochrome b5 reductase gene. Blood Cells Mol Dis 2008; 41: 50–55.

    CAS  PubMed  Google Scholar 

  36. Davis CA, Crowley LJ, Barber MJ . Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*. Arch Biochem Biophys 2004; 431: 233–244.

    PubMed  Google Scholar 

  37. Yilmaz D, Cogulu O, Ozkinay F, Kavakli K, Roos D . A novel mutation in the DIA1 gene in a patient with methemoglobinemia type II. Am J Med Genet A 2005; 133A: 101–102.

    PubMed  Google Scholar 

  38. Liu E, Percy MJ, Amos CI, Guan Y, Shete S, Stockton DW et al. The worldwide distribution of the VHL 598C>T mutation indicates a single founding event. Blood 2004; 103: 1937–1940.

    CAS  PubMed  Google Scholar 

  39. Percy MJ, McMullin MF, Jowitt SN, Potter M, Treacy M, Watson WH et al. Chuvash-type congenital polycythemia in 4 families of Asian and Western European ancestry. Blood 2003; 102: 1097–1099.

    CAS  PubMed  Google Scholar 

  40. Perrotta S, Nobili B, Ferraro M, Migliaccio C, Borriello A, Cucciolla V et al. Von Hippel-Lindau-dependent polycythemia is endemic on the island of Ischia: identification of a novel cluster. Blood 2006; 107: 514–519.

    CAS  PubMed  Google Scholar 

  41. Ang SO, Chen H, Gordeuk VR, Sergueeva AI, Polyakova LA, Miasnikova GY et al. Endemic polycythemia in Russia: mutation in the VHL gene. Blood Cells Mol Dis 2002; 28: 57–62.

    PubMed  Google Scholar 

  42. Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J, Guan Y et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet 2002; 32: 614–621.

    CAS  PubMed  Google Scholar 

  43. Percy MJ, Beard ME, Carter C, Thein SL . Erythrocytosis and the Chuvash von Hippel-Lindau mutation. Br J Haematol 2003; 123: 371–372.

    PubMed  Google Scholar 

  44. Gordeuk VR, Sergueeva AI, Miasnikova GY, Okhotin D, Voloshin Y, Choyke PL et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood 2004; 103: 3924–3932.

    CAS  PubMed  Google Scholar 

  45. Niu X, Miasnikova GY, Sergueeva AI, Polyakova LA, Okhotin DJ, Tuktanov NV et al. Altered cytokine profiles in patients with Chuvash polycythemia. Am J Hematol 2008; 84: 74–78.

    Google Scholar 

  46. Sergueeva AI, Miasnikova GY, Okhotin DJ, Levina AA, Debebe Z, Ammosova T et al. Elevated homocysteine, glutathione and cysteinylglycine concentrations in patients homozygous for the Chuvash polycythemia VHL mutation. Haematologica 2008; 93: 279–282.

    CAS  PubMed  Google Scholar 

  47. Bento MC, Chang KT, Guan Y, Liu E, Caldas G, Gatti RA et al. Congenital polycythemia with homozygous and heterozygous mutations of von Hippel-Lindau gene: five new Caucasian patients. Haematologica 2005; 90: 128–129.

    CAS  PubMed  Google Scholar 

  48. Randi ML, Murgia A, Putti MC, Martella M, Casarin A, Opocher G et al. Low frequency of VHL gene mutations in young individuals with polycythemia and high serum erythropoietin. Haematologica 2005; 90: 689–691.

    CAS  PubMed  Google Scholar 

  49. Pastore Y, Jedlickova K, Guan Y, Liu E, Fahner J, Hasle H et al. Mutations of von Hippel-Lindau tumor-suppressor gene and congenital polycythemia. Am J Hum Genet 2003; 73: 412–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pastore YD, Jelinek J, Ang S, Guan Y, Liu E, Jedlickova K et al. Mutations in the VHL gene in sporadic apparently congenital polycythemia. Blood 2003; 101: 1591–1595.

    CAS  PubMed  Google Scholar 

  51. Cario H, Schwarz K, Jorch N, Kyank U, Petrides PE, Schneider DT et al. Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene and VHL-haplotype analysis in patients with presumable congenital erythrocytosis. Haematologica 2005; 90: 19–24.

    CAS  PubMed  Google Scholar 

  52. Horton JC, Harsh IV GR, Fisher JW, Hoyt WF . Von Hippel-Lindau disease and erythrocytosis: radioimmunoassay of erythropoietin in cyst fluid from a brainstem hemangioblastoma. Neurology 1991; 41: 753–754.

    CAS  PubMed  Google Scholar 

  53. Whaley JM, Naglich J, Gelbert L, Hsia YE, Lamiell JM, Green JS et al. Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma. Am J Hum Genet 1994; 55: 1092–1102.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Percy MJ, Zhao Q, Flores A, Harrison C, Lappin TR, Maxwell PH et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci USA 2006; 103: 654–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Percy MJ, Furlow PW, Beer PA, Lappin TR, McMullin MF, Lee FS . A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 2007; 110: 2193–2196.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Al-Sheikh M, Moradkhani K, Lopez M, Wajcman H, Prehu C . Disturbance in the HIF-1alpha pathway associated with erythrocytosis: further evidences brought by frameshift and nonsense mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene. Blood Cells Mol Dis 2008; 40: 160–165.

    CAS  PubMed  Google Scholar 

  57. Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C, Galateau-Salle F et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 2008; 359: 2685–2692.

    CAS  PubMed  Google Scholar 

  58. Percy MJ, Beer PA, Campbell G, Dekker AW, Green AR, Oscier D et al. Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis. Blood 2008; 111: 5400–5402.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Martini M, Teofili L, Cenci T, Giona F, Torti L, Rea M et al. A novel heterozygous HIF2AM535I mutation reinforces the role of oxygen sensing pathway disturbances in the pathogenesis of familial erythrocytosis. Haematologica 2008; 93: 1068–1071.

    CAS  PubMed  Google Scholar 

  60. D’Andrea AD, Yoshimura A, Youssoufian H, Zon LI, Koo JW, Lodish HF . The cytoplasmic region of the erythropoietin receptor contains nonoverlapping positive and negative growth-regulatory domains. Mol Cell Biol 1991; 11: 1980–1987.

    PubMed  PubMed Central  Google Scholar 

  61. Al-Sheikh M, Mazurier E, Gardie B, Casadevall N, Galacteros F, Goossens M et al. A study of 36 unrelated cases with pure erythrocytosis revealed three new mutations in the erythropoietin receptor gene. Haematologica 2008; 93: 1072–1075.

    CAS  PubMed  Google Scholar 

  62. Percy ML . Genetically heterogeneous origins of idiopathic erythrocytosis. Hematology 2007; 12: 131–139.

    CAS  PubMed  Google Scholar 

  63. Furukawa T, Narita M, Sakaue M, Otsuka T, Kuroha T, Masuko M et al. Primary familial polycythaemia associated with a novel point mutation in the erythropoietin receptor. Br J Haematol 1997; 99: 222–227.

    CAS  PubMed  Google Scholar 

  64. Arcasoy MO, Karayal AF . Erythropoietin hypersensitivity in primary familial and congenital polycythemia: role of tyrosines Y285 and Y344 in erythropoietin receptor cytoplasmic domain. Biochim Biophys Acta 2005; 1740: 17–28.

    CAS  PubMed  Google Scholar 

  65. Trimble M, Caro J, Talalla A, Brain M . Secondary erythrocytosis due to a cerebellar hemangioblastoma: demonstration of erythropoietin mRNA in the tumor. Blood 1991; 78: 599–601.

    CAS  PubMed  Google Scholar 

  66. Yoshida M, Koshiyama M, Fujii H, Konishi M . Erythrocytosis and a fibroid. Lancet 1999; 354: 216.

    CAS  PubMed  Google Scholar 

  67. Drenou B, Le Tulzo Y, Caulet-Maugendre S, Le Guerrier A, Leclercq C, Guilhem I et al. Pheochromocytoma and secondary erythrocytosis: role of tumour erythropoietin secretion. Nouv Rev Fr Hematol 1995; 37: 197–199.

    CAS  PubMed  Google Scholar 

  68. Hama Y, Kaji T, Ito K, Hayakawa M, Tobe M, Kosuda S . Erythropoietin-producing renal cell carcinoma arising from autosomal dominant polycystic kidney disease. Br J Radiol 2005; 78: 269–271.

    CAS  PubMed  Google Scholar 

  69. Shiramizu M, Katsuoka Y, Grodberg J, Koury ST, Fletcher JA, Davis KL et al. Constitutive secretion of erythropoietin by human renal adenocarcinoma cells in vivo and in vitro. Exp Cell Res 1994; 215: 249–256.

    CAS  PubMed  Google Scholar 

  70. Muta H, Funakoshi A, Baba T, Uike N, Wakasugi H, Kozuru M et al. Gene expression of erythropoietin in hepatocellular carcinoma. Intern Med 1994; 33: 427–431.

    CAS  PubMed  Google Scholar 

  71. Godeau P, Bletry O, Brochard C, Hussonois C . Polycythemia vera and primary hyperparathyroidism. Arch Intern Med 1981; 141: 951–953.

    CAS  PubMed  Google Scholar 

  72. Bruneval P, Sassy C, Mayeux P, Belair MF, Casadevall N, Roux FX et al. Erythropoietin synthesis by tumor cells in a case of meningioma associated with erythrocytosis. Blood 1993; 81: 1593–1597.

    CAS  PubMed  Google Scholar 

  73. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L . Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 1976; 295: 913–916.

    CAS  PubMed  Google Scholar 

  74. Prchal JF, Axelrad AA . Letter: bone-marrow responses in polycythemia vera. N Engl J Med 1974; 290: 1382.

    CAS  PubMed  Google Scholar 

  75. Hess G, Rose P, Gamm H, Papadileris S, Huber C, Seliger B . Molecular analysis of the erythropoietin receptor system in patients with polycythaemia vera. Br J Haematol 1994; 88: 794–802.

    CAS  PubMed  Google Scholar 

  76. Mirza AM, Correa PN, Axelrad AA . Increased basal and induced tyrosine phosphorylation of the insulin-like growth factor I receptor beta subunit in circulating mononuclear cells of patients with polycythemia vera. Blood 1995; 86: 877–882.

    CAS  PubMed  Google Scholar 

  77. Wickrema A, Chen F, Namin F, Yi T, Ahmad S, Uddin S et al. Defective expression of the SHP-1 phosphatase in polycythemia vera. Exp Hematol 1999; 27: 1124–1132.

    CAS  PubMed  Google Scholar 

  78. Sui XW, Krantz SB, Zhao ZH . Identification of increased protein tyrosine phosphatase activity in polycythemia vera erythroid progenitor cells. Blood 1997; 90: 651–657.

    CAS  PubMed  Google Scholar 

  79. Roder S, Steimle C, Meinhardt G, Pahl HL . STAT3 is constitutively active in some patients with polycythemia rubra vera. Exp Hematol 2001; 29: 694–702.

    CAS  PubMed  Google Scholar 

  80. Dai C, Krantz SB . Increased expression of the INK4a/ARF locus in polycythemia vera. Blood 2001; 97: 3424–3432.

    CAS  PubMed  Google Scholar 

  81. Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL . Expression of Bcl-x in erythroid precursors from patients with polycythemia vera [see comments]. N Engl J Med 1998; 338: 564–571.

    CAS  PubMed  Google Scholar 

  82. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    CAS  PubMed  Google Scholar 

  83. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    CAS  PubMed  Google Scholar 

  84. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    CAS  PubMed  Google Scholar 

  85. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    CAS  PubMed  Google Scholar 

  86. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    PubMed  PubMed Central  Google Scholar 

  87. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    CAS  PubMed  Google Scholar 

  89. Pardanani A, Lasho TL, Finke C, Hanson CA, Tefferi A . Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 2007; 21: 1960–1963.

    CAS  PubMed  Google Scholar 

  90. Pietra D, Li S, Brisci A, Passamonti F, Rumi E, Theocharides A et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 2008; 111: 1686–1689.

    CAS  PubMed  Google Scholar 

  91. Messinezy M, Westwood NB, El-Hemaidi I, Marsden JT, Sherwood RS, Pearson TC . Serum erythropoietin values in erythrocytoses and in primary thrombocythaemia. Br J Haematol 2002; 117: 47–53.

    CAS  PubMed  Google Scholar 

  92. Mossuz P, Girodon F, Donnard M, Latger-Cannard V, Dobo I, Boiret N et al. Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Haematologica 2004; 89: 1194–1198.

    CAS  PubMed  Google Scholar 

  93. Thiele J, Kvasnicka HM, Muehlhausen K, Walter S, Zankovich R, Diehl V . Polycythemia rubra vera versus secondary polycythemias. A clinicopathological evaluation of distinctive features in 199 patients. Pathol Res Pract 2001; 197: 77–84.

    CAS  PubMed  Google Scholar 

  94. Gangat N, Strand J, Lasho TL, Finke CM, Knudson RA, Pardanani A et al. Cytogenetic studies at diagnosis in polycythemia vera: clinical and JAK2V617F allele burden correlates. Eur J Haematol 2008; 80: 197–200.

    PubMed  Google Scholar 

  95. Alexandrescu DT, McClure R, Farzanmehr H, Dasanu CA . Secondary erythrocytosis produced by the tyrosine kinase inhibitors sunitinib and sorafenib. J Clin Oncol 2008; 26: 4047–4048.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Tefferi.

Additional information

Conflict of interest

The authors declare no financial conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patnaik, M., Tefferi, A. The complete evaluation of erythrocytosis: congenital and acquired. Leukemia 23, 834–844 (2009). https://doi.org/10.1038/leu.2009.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.54

Keywords

This article is cited by

Search

Quick links