Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Five years since the discovery of FIP1L1–PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias

Abstract

The year 2008 marks the fifth anniversary since the publication which identified the FIP1L1–PDGFRA fusion gene in patients with idiopathic hypereosinophilia. With the benefit of time, a more comprehensive picture has emerged regarding several characteristics of the fusion, including its incidence, biological features and the clinical profile of patients who carry the molecular rearrangement. A few prospective trials have now better defined the natural history of imatinib-treated FIP1L1–PDGFRA-positive patients, from which some basic conclusions can be drawn: the prognosis is outstanding, acquired resistance is exceedingly rare, but ongoing imatinib treatment is likely required to prevent relapse. The emergence of genetically assigned eosinophilias has led the World Health Organization in 2008 to adopt a semi-molecular classification scheme, with one subcategory named ‘myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1.’ Molecular rearrangements involving other partner genes, such as ETV6 and JAK2, have also been associated with eosinophilic disorders, and will likely be assimilated into such classifications over time. Despite the molecularly defined eosinophilias comprising a small proportion of cases compared to the aggregate of other subtypes of hypereosinophilia, their recognition is critical because of the availability of highly effective molecularly targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Bain B, Pierre R, Imbert M, Vardiman JW, Brunning RD, Flandrin G . Chronic eosinophilic leukaemia and the hypereosinophilic syndrome. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). World Health Organization of tumours: tumours of haematopoietic and lymphoid tissues. IARC Press: Lyon, France, 2001, pp 29–31.

    Google Scholar 

  2. Klion AD, Noel P, Akin C, Law MA, Gilliland DG, Cools J et al. Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood 2003; 101: 4660–4666.

    CAS  PubMed  Google Scholar 

  3. Simon HU, Plotz SG, Dummer R, Blaser K . Abnormal clones of T cells producing interleukin-5 in idiopathic hypereosinophilia. N Eng J Med 1999; 341: 1112–1120.

    CAS  Google Scholar 

  4. Roufosse F, Cogan E, Goldman M . Recent advances in pathogenesis and management of hypereosinophilic syndromes. Allergy 2004; 59: 673–689.

    CAS  PubMed  Google Scholar 

  5. Chusid MJ, Dale DC, West BC, Wolff SM . The hypereosinophilic syndrome. Analysis of fourteen cases with review of the literature. Medicine 1975; 54: 1–27.

    CAS  PubMed  Google Scholar 

  6. Bain BJ, Gilliland DG, Horny H-P, Vardiman JW . Chronic eosinophilic leukaemia, not otherwise specified. In: Swerdlow S, Harris NL, Stein H, Jaffe ES, Theile J, Vardiman JW (eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, France, 2008, pp 51–53.

    Google Scholar 

  7. Bain BJ, Gilliland DG, Horny H-P, Vardiman JW . Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1. In: Swerdlow S, Harris NL, Stein H, Jaffe ES, Theile J, Vardiman JW (eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, France, 2008, pp 68–73.

    Google Scholar 

  8. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348: 1201–1214.

    Article  CAS  PubMed  Google Scholar 

  9. Baccarani M, Cilloni D, Rondoni M, Ottaviani E, Messa F, Merante S et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 2007; 92: 1173–1179.

    CAS  PubMed  Google Scholar 

  10. Jovanovic JV, Score J, Waghorn K, Cilloni D, Gottardi E, Metzgeroth G et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 2007; 109: 4635–4640.

    CAS  PubMed  Google Scholar 

  11. Pardanani A, Brockman SR, Paternoster SF, Flynn HC, Ketterling RP, Lasho TL et al. FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood 2004; 104: 3038–3045.

    Article  CAS  PubMed  Google Scholar 

  12. Pardanani A, Ketterling RP, Li CY, Patnaik MM, Wolanskyj AP, Elliott MA et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res 2006; 30: 965–970.

    Article  CAS  PubMed  Google Scholar 

  13. Vandenberghe P, Wlodarska I, Michaux L, Zachee P, Boogaerts M, Vanstraelen D et al. Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia 2004; 18: 734–742.

    CAS  PubMed  Google Scholar 

  14. Roche-Lestienne C, Lepers S, Soenen-Cornu V, Kahn JE, Lai JL, Hachulla E et al. Molecular characterization of the idiopathic hypereosinophilic syndrome (HES) in 35 French patients with normal conventional cytogenetics. Leukemia 2005; 19: 792–798.

    CAS  PubMed  Google Scholar 

  15. La Starza R, Specchia G, Cuneo A, Beacci D, Nozzoli C, Luciano L et al. The hypereosinophilic syndrome: fluorescence in situ hybridization detects the del(4)(q12)-FIP1L1/PDGFRA but not genomic rearrangements of other tyrosine kinases. Haematologica 2005; 90: 596–601.

    CAS  PubMed  Google Scholar 

  16. Trempat P, Villalva C, Laurent G, Armstrong F, Delsol G, Dastugue N et al. Chronic myeloproliferative disorders with rearrangement of the platelet-derived growth factor alpha receptor: a new clinical target for STI571/Glivec. Oncogene 2003; 22: 5702–5706.

    CAS  PubMed  Google Scholar 

  17. Baxter EJ, Hochhaus A, Bolufer P, Reiter A, Fernandez JM, Senent L et al. The t(4;22)(q12;q11) in atypical chronic myeloid leukaemia fuses BCR to PDGFRA. Hum Mol Genet 2002; 11: 1391–1397.

    CAS  PubMed  Google Scholar 

  18. Griffin JH, Leung J, Bruner RJ, Caligiuri MA, Briesewitz R . Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci USA 2003; 100: 7830–7835.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Score J, Curtis C, Waghorn K, Stalder M, Jotterand M, Grand FH et al. Identification of a novel imatinib responsive KIF5B-PDGFRA fusion gene following screening for PDGFRA overexpression in patients with hypereosinophilia. Leukemia 2006; 20: 827–832.

    CAS  PubMed  Google Scholar 

  20. Walz C, Curtis C, Schnittger S, Schultheis B, Metzgeroth G, Schoch C et al. Transient response to imatinib in a chronic eosinophilic leukemia associated with ins(9;4)(q33;q12q25) and a CDK5RAP2-PDGFRA fusion gene. Genes Chromosomes Cancer 2006; 45: 950–956.

    CAS  PubMed  Google Scholar 

  21. Curtis CE, Grand FH, Musto P, Clark A, Murphy J, Perla G et al. Two novel imatinib-responsive PDGFRA fusion genes in chronic eosinophilic leukaemia. Br J Haematol 2007; 138: 77–81.

    CAS  PubMed  Google Scholar 

  22. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    Article  CAS  PubMed  Google Scholar 

  23. Curtis C, Apperley JF, Dang R, Jeng M, Gotlib J, Cross NCP et al. The platelet-derived growth factor receptor beta fuses to two distinct loci at 3p21 in imatinib responsive chronic eosinophilic leukemia. Blood 2005; 106: 909a [Abstract 3253].

    Google Scholar 

  24. Walz C, Metzgeroth G, Haferlach C, Schmitt-Graeff A, Fabarius A, Hagen V et al. Characterization of three new imatinib-responsive fusion genes in chronic myeloproliferative disorders generated by disruption of the platelet-derived growth factor receptor beta gene. Haematologica 2007; 92: 163–169.

    CAS  PubMed  Google Scholar 

  25. Rosati R, La Starza R, Luciano L, Gorello P, Matteucci C, Pierini V et al. TPM3/PDGFRB fusion transcript and its reciprocal in chronic eosinophilic leukemia. Leukemia 2006; 20: 1623–1624.

    CAS  PubMed  Google Scholar 

  26. Wilkinson K, Velloso ER, Lopes LF, Lee C, Aster JC, Shipp MA et al. Cloning of the t(1;5)(q23;q33) in a myeloproliferative disorder associated with eosinophilia: involvement of PDGFRB and response to imatinib. Blood 2003; 102: 4187–4190.

    CAS  PubMed  Google Scholar 

  27. Ross TS, Bernard OA, Berger R, Gilliland DG . Fusion of Huntington interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood 1998; 91: 4419–4426.

    CAS  PubMed  Google Scholar 

  28. Schwaller J, Anastasiadou E, Cain D, Kutok J, Wojiski S, Williams IR et al. H4/D10S170, a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood 2001; 97: 3910–3918.

    CAS  PubMed  Google Scholar 

  29. Kulkarni S, Heath C, Parker S, Chase A, Iqbal S, Pocock CF et al. Fusion of H4/D10S170 to the platelet-derived growth factor receptor beta in BCR-ABL negative myeloproliferative disorders with a t(5;10)(q33;q21). Cancer Res 2000; 60: 3592–3598.

    CAS  PubMed  Google Scholar 

  30. Vizmanos JL, Novo FJ, Roman JP, Baxter EJ, Lahortiga I, Larrayoz MJ et al. NIN, a gene encoding a CEP110-like centrosomal protein, is fused to PDGFRB in a patient with a t(5;14)(q33;q24) and an imatinib-responseive myeloproliferative disorder. Cancer Res 2004; 64: 2673–2676.

    CAS  PubMed  Google Scholar 

  31. Levine RL, Wadleigh M, Sternberg DW, Wlodarska I, Galinsky I, Stone RM et al. KIAA1509 is a novel PDGFRB fusion partner in imatinib-responsive myeloproliferative disease associated with a t(5;14)(q33;q32). Leukemia 2005; 19: 27–30.

    CAS  PubMed  Google Scholar 

  32. Abe A, Emi N, Tanimoto M, Terasaki H, Marunouchi T, Saito H . Fusion of the platelet-derived growth factor beta receptor to a novel gene CEV14 in acute myelogenous leukemia after clonal evolution. Blood 1997; 90: 4271–4277.

    CAS  PubMed  Google Scholar 

  33. Grand FH, Burgstaller S, Kuhr T, Baxter EJ, Webersinke G, Thaler J et al. P53-binding protein 1 is fused to the platelet-derived growth factor receptor beta in a patient with a t(5;15)(q33;q22) and an imatinib-responsive eosinophilic myeloproliferative disorder. Cancer Res 2004; 64: 7216–7219.

    CAS  PubMed  Google Scholar 

  34. La Starza R, Rosati R, Roti G, Gorello P, Bardi A, Crescenzi B . A new NDE1/PDGFRB fusion transcript underlying chronic myelomonocytic leukaemia in Noonan Syndrome. Leukemia 2007; 21: 830–833.

    CAS  PubMed  Google Scholar 

  35. Magnusson MK, Meade KE, Brown KE, Arthur DC, Krueger LA, Barrett AJ et al. Rabaptin-5 is a novel fusion partner to platelet-derived growth factor receptor beta in chronic myelomonocytic leukemia. Blood 2001; 98: 2518–2525.

    CAS  PubMed  Google Scholar 

  36. Morerio C, Acquila M, Rosanda C, Rapella A, Dufour C, Locatelli F et al. HCMOGT-1 is a novel fusion partner to PDGFRB in juvenile myelomonocytic leukemia with t(5;17)(q33;p11.2). Cancer Res 2004; 64: 2649–2651.

    CAS  PubMed  Google Scholar 

  37. Xiao S, Nalabolu SR, Aster JC, Ma J, Abruzzo L, Jaffe ES et al. FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet 1998; 18: 84–87.

    CAS  PubMed  Google Scholar 

  38. Reiter A, Sohal J, Kulkarni S, Chase A, Macdonald DH, Aguiar RC et al. Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome. Blood 1998; 92: 1735–1742.

    CAS  PubMed  Google Scholar 

  39. Popovici C, Adelaide J, Ollendorff V, Chaffanet M, Guasch G, Jacrot M et al. Fibroblast growth factor receptor 1 is fused to FIM in stem-cell myeloproliferative disorder with t(8;13). Proc Natl Acad Sci USA 1998; 95: 5712–5717.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Smedley D, Hamoudi R, Clark J, Warren W, Abdul-Rauf M, Somers G et al. The t(8;13)(p11;q11–12) rearrangement associated with an atypical myeloproliferative disorder fuses the fibroblast growth factor receptor 1 gene to a novel gene RAMP. Hum Mol Genet 1998; 7: 637–642.

    CAS  PubMed  Google Scholar 

  41. Guasch G, Mack GJ, Popovici C, Dastague N, Birnbaum D, Rattner JB et al. FGFR1 is fused to the centrosome-associated protein CEP110 in the 8p12 stem cell myeloproliferative disorder with t(8;9)(p12;q33). Blood 2000; 95: 1788–1796.

    CAS  PubMed  Google Scholar 

  42. Popovici C, Zhang B, Gregoire MJ, Gregoire MJ, Jonveaux P, Lafage-Pochitaloff M et al. The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood 1999; 93: 1381–1389.

    CAS  PubMed  Google Scholar 

  43. Demiroglu A, Steer EJ, Heath C, Taylor K, Bentley M, Allen SL et al. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood 2001; 98: 3778–3783.

    CAS  PubMed  Google Scholar 

  44. Belloni E, Trubia M, Gasparini P, Micucci C, Tapinassi C, Confalonieri S et al. 8p11 myeloproliferative syndrome with a novel t(7;8) translocation leading to fusion of the FGFR1 and TIF1 genes. Genes Chromosomes Cancer 2005; 42: 320–325.

    CAS  PubMed  Google Scholar 

  45. Walz C, Chase A, Schoch C, Weisser A, Schlegel F, Hochhaus A et al. The t(8;17)(p11;q25) in the 8p11 myeloproliferative syndrome fuses MYO18A to FGFR1. Leukemia 2005; 19: 1005–1009.

    CAS  PubMed  Google Scholar 

  46. Guasch G, Popovici C, Mugneret F, Chaffanet M, Pontarotti P, Birnbaum D et al. Endogenous retroviral sequence is fused to FGFR1 kinase in the 8p12 stem-cell myeloproliferative disorder with t(8;19)(p12;q13.3). Blood 2003; 101: 286–288.

    CAS  PubMed  Google Scholar 

  47. Grand EK, Grand FH, Chase AJ, Ross FM, Corcoran MM, Oscier DG et al. Identification of a novel gene, FGFR1OP2, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2004; 40: 78–83.

    CAS  PubMed  Google Scholar 

  48. Chen J, DeAngelo DJ, Kutok JL, Williams IR, Lee BH, Wadleigh M et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci USA 2004; 101: 14479–14484.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Levine RL, Gilliland DG . Myeloproliferative disorders. Blood 2008; 112: 2190–2198.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 2005; 65: 2662–2667.

    CAS  PubMed  Google Scholar 

  51. Murati A, Gelsi-Boyer V, Adélaïde J, Perot C, Talmant P, Giraudier S et al. PCM1-JAK2 fusion in myeloproliferative disorders and acute erythroid leukemia with t(8;9) translocation. Leukemia 2005; 19: 1692–1696.

    CAS  PubMed  Google Scholar 

  52. Bousquet M, Quelen C, De Mas V, Duchayne E, Roquefeuil B, Delsol G et al. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 2005; 24: 7248–7252.

    CAS  PubMed  Google Scholar 

  53. Adélaïde J, Pérot C, Gelsi-Boyer V, Pautas C, Murati A, Copie-Bergman C et al. A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma. Leukemia 2006; 20: 536–537.

    PubMed  Google Scholar 

  54. Huang KP, Chase AJ, Cross NC, Reiter A, Li TY, Wang TF et al. Evolutional change of karyotype with t(8;9)(p22;p24) and HLA-DR immunophenotype in relapsed acute myeloid leukemia. Int J Hematol 2008; 88: 197–201.

    PubMed  Google Scholar 

  55. Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996; 16: 4107–4116.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Xiao S, McCarthy JG, Aster JC, Fletcher JA . ZNF198-FGFR1 transforming activity depends on a novel proline-rich ZNF198 oligomerization domain. Blood 2000; 96: 699–704.

    CAS  PubMed  Google Scholar 

  57. McWhirter JR, Galasso DL, Wang JY . A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993; 13: 7587–7595.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stover EH, Chen J, Folens C, Lee BH, Mentens N, Marynen P et al. Activation of FIP1L1-PDGFRalpha requires disruption of the juxtamembrane domain of PDGFRalpha and is FIP1L1-independent. Proc Natl Acad Sci USA 2006; 103: 8078–8083.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chan PM, Ilangumaran S, La RJ, Chakrabartty A, Rottapel R . Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol 2003; 23: 3067–3078.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004; 13: 169–178.

    CAS  PubMed  Google Scholar 

  61. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    CAS  PubMed  Google Scholar 

  62. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von MM, Joensuu H et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21: 4342–4349.

    CAS  PubMed  Google Scholar 

  63. Lahortiga I, Akin C, Cools J, Wilson TM, Mentens N, Arthur DC et al. Activity of imatinib in systemic mastocytosis with chronic basophilic leukemia and a PRKG2-PDGFRB fusion. Haematologica 2008; 93: 49–55.

    CAS  PubMed  Google Scholar 

  64. Buitenhuis M, Verhagen LP, Cools J, Coffer PJ . Molecular mechanisms underlying FIP1L1-PDGFRA-mediated myeloproliferation. Cancer Res 2007; 67: 3759–3766.

    CAS  PubMed  Google Scholar 

  65. Cools J, Stover EH, Boulton CL, Gotlib J, Legare RD, Amaral SM et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 2003; 3: 459–469.

    CAS  PubMed  Google Scholar 

  66. Cools J, Quentmeier H, Huntly BJ, Marynen P, Griffin JD, Drexler HG et al. The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 2004; 103: 2802–2805.

    CAS  PubMed  Google Scholar 

  67. Yamada Y, Rothenberg ME, Lee AW, Akei HS, Brandt EB, Williams DA et al. The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease. Blood 2006; 107: 4071–4079.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Burgstaller S, Kreil S, Waghorn K, Metzgeroth G, Preudhomme C, Zoi K et al. The severity of FIP1L1-PDGFRA-positive chronic eosinophilic leukaemia is associated with polymorphic variation at the IL5RA locus. Leukemia 2007; 21: 2428–2432.

    CAS  PubMed  Google Scholar 

  69. Pardanani A, Ketterling RP, Brockman SR, Flynn HC, Paternoster SF, Shearer BM et al. CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 2003; 102: 3093–3096.

    CAS  PubMed  Google Scholar 

  70. Robyn J, Lemery S, McCoy JP, Kubofcik J, Kim YJ, Pack S et al. Multilineage involvement of the fusion gene in patients with FIP1L1/PDGFRA-positive hypereosinophilic syndrome. Br J Haematol 2006; 132: 286–292.

    CAS  PubMed  Google Scholar 

  71. Maric I, Robyn J, Metcalfe DD, Fay MP, Carter M, Wilson T et al. KIT D816V-associated systemic mastocytosis with eosinophilia and FIP1L1/PDGFRA-associated chronic eosinophilic leukemia are distinct entities. J Allergy Clin Immunol 2007; 120: 680–687.

    CAS  PubMed  Google Scholar 

  72. Metzgeroth G, Walz C, Score J, Siebert R, Schnittger S, Haferlach C et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia 2007; 21: 1183–1188.

    CAS  PubMed  Google Scholar 

  73. Fauci AS, Harley JB, Roberts WC, Ferrans VJ, Gralnick HR, Bjornson BH . NIH Conference. The idiopathic hypereosinophilic syndrome. Clinical, pathophysiologic, and therapeutic considerations. Ann Intern Med 1982; 97: 78–92.

    CAS  PubMed  Google Scholar 

  74. Spry CJ, Davies J, Tai PC, Olsen EG, Oakley CM, Goodwin JF . Clinical features of fifteen patients with the hypereosinophilic syndrome. Q J Med 1983; 52: 1–22.

    CAS  PubMed  Google Scholar 

  75. Lefebvre C, Bletry O, Degoulet P, Guillevin L, Bentana-Pessayre M, Le Thi Huiong D et al. Prognostic factors of hypereosinophilic syndrome. Study of 40 cases. Ann Med Interne (Paris) 1989; 140: 253–257.

    CAS  Google Scholar 

  76. Gotlib J, Cools J, Malone III JM, Schrier SL, Gilliland DG, Coutre SE . The FIP1L1-PDGFRα fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 2004; 103: 2879–2891.

    CAS  PubMed  Google Scholar 

  77. Schaller JL, Burkland GA . Case report: rapid and complete control of idiopathic hypereosinophilia with imatinib mesylate. MedGenMed 2001; 3: 9.

    CAS  PubMed  Google Scholar 

  78. Gleich GJ, Leiferman KM, Pardanani A, Tefferi A, Butterfield JH . Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 2002; 359: 1577–1578.

    CAS  PubMed  Google Scholar 

  79. Ault P, Cortes J, Koller C, Kaled ES, Kantarjian H . Response of idiopathic hypereosinophilic syndrome to treatment with imatinib mesylate. Leuk Res 2002; 26: 881–884.

    CAS  PubMed  Google Scholar 

  80. Gotlib J, Malone JM, DeAngelo DJ, Stone RM, Gilliland DG, Clark J et al. Imatinib mesylate (GLEEVEC) induced rapid and complete hematologic remissions in patients with idiopathic hypereosinophilic syndrome (HES) without evidence of BCR-ABL or activating mutations in c-KIT and platelet derived growth factor receptor-beta. Blood 2002; 100: 798a [Abstract 3152].

    Google Scholar 

  81. Klion AD, Robyn J, Akin C, Noel P, Brown M, Law M et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood 2004; 103: 473–478.

    CAS  PubMed  Google Scholar 

  82. Klion AD, Robyn J, Maric I, Fu W, Schmid L, Lemery S et al. Relapse following discontinuation of imatinib mesylate therapy for FIP1L1/PDGFRA-positive chronic eosinophilic leukemia: implications for optimal dosing. Blood 2007; 110: 3552–3556.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Helbig G, Stella-Hołowiecka B, Majewski M, Całbecka M, Gajkowska J, Klimkiewicz R et al. A single weekly dose of imatinib is sufficient to induce and maintain remission of chronic eosinophilic leukaemia in FIP1L1-PDGFRA-expressing patients. Br J Haematol 2008; 141: 200–204.

    CAS  PubMed  Google Scholar 

  84. Pardanani A, Reeder T, Porrata LF, Li CY, Tazelaar HD, Baxter EJ et al. Imatinib therapy for hypereosinophilic syndrome and other eosinophilic disorders. Blood 2003; 101: 3391–3397.

    CAS  PubMed  Google Scholar 

  85. Pitini V, Arrigo C, Azzarello D, La Gattuta G, Amata C, Righi M et al. Serum concentration of cardiac troponin T in patients with hypereosinophilic syndrome treated with imatinib is predictive of adverse outcomes. Blood 2003; 102: 3456–3457.

    CAS  PubMed  Google Scholar 

  86. Ohnishi H, Kandabashi K, Maeda Y, Kawamura M, Watanabe T . Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T6741 mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol 2006; 134: 547–549.

    CAS  PubMed  Google Scholar 

  87. von Bubnoff N, Sandherr M, Schlimok G, Andreesen R, Peschel C, Duyster J . Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 2005; 19: 286–287.

    CAS  PubMed  Google Scholar 

  88. Bradeen HA, Eide CA, O’Hare T, Johnson KJ, Willis SG, Lee FY et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 2006; 108: 2332–2338.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lierman E, Folens C, Stover EH, Mentens N, Van MH, Scheers W et al. Sorafenib is a potent inhibitor of FIP1L1-PDGFRalpha and the imatinib-resistant FIP1L1-PDGFRalpha T674I mutant. Blood 2006; 108: 1374–1376.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stover EH, Chen J, Lee BH, Cools J, McDowell E, Adelsperger J et al. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRbeta and FIP1L1-PDGFRalpha in vitro and in vivo. Blood 2005; 106: 3206–3213.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. von Bubnoff N, Gorantla SP, Thone S, Peschel C, Duyster J . The FIP1L1-PDGFRA T674I mutation can be inhibited by the tyrosine kinase inhibitor AMN107 (nilotinib). Blood 2006; 107: 4970–4971.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Gotlib or J Cools.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotlib, J., Cools, J. Five years since the discovery of FIP1L1–PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 22, 1999–2010 (2008). https://doi.org/10.1038/leu.2008.287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.287

Keywords

This article is cited by

Search

Quick links