Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

NPM1 mutations in therapy-related acute myeloid leukemia with uncharacteristic features

Abstract

Frameshift mutations of the nucleophosmin gene (NPM1) were recently reported as a frequently occurring abnormality in patients with de novo acute myeloid leukemia (AML). To evaluate the frequency of NPM1 mutations in patients with therapy-related myelodysplasia (t-MDS) and therapy-related AML (t-AML), and their possible association to type of previous therapy and to other gene mutations, 140 patients with t-MDS or t-AML were analyzed for mutations of NPM1. NPM1 mutations were observed in 7 of 51 patients presenting as overt t-AML, as compared to only 3 of 89 patients presenting as t-MDS (P=0.037). The mutations were not related to any specific type of previous therapy, but they were significantly associated with a normal karyotype and mutations of FLT3 (P=0.0002 for both comparisons). Only 1 of 10 patients with NPM1 mutations presented chromosome aberrations characteristic of therapy-related disease, and 7q−/−7, the most frequent abnormalities of t-MDS/t-AML, were not observed (P=0.002). This raises the question whether some of the cases presenting NPM1 mutations were in fact cases of de novo leukemia. The close association to class I mutations and the inverse association to class II mutations suggest mutations of NPM1 as representing a class II mutation-like abnormality in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284.

    Article  CAS  Google Scholar 

  2. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996; 87: 882–886.

    CAS  Google Scholar 

  3. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996; 12: 265–275.

    CAS  Google Scholar 

  4. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266.

    Article  CAS  Google Scholar 

  5. Boissel N, Renneville A, Biggio V, Philippe N, Thomas X, Cayuela JM et al. Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood 2005; 106: 3618–3620.

    Article  CAS  Google Scholar 

  6. Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005; 106: 3740–3746.

    Article  Google Scholar 

  7. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005; 106: 3747–3754.

    Article  CAS  Google Scholar 

  8. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 3733–3739.

    Article  CAS  Google Scholar 

  9. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006; 107: 4011–4020.

    Article  CAS  Google Scholar 

  10. Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 2005; 106: 2854–2861.

    Article  CAS  Google Scholar 

  11. Borer RA, Lehner CF, Eppenberger HM, Nigg EA . Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 1989; 56: 379–390.

    Article  CAS  Google Scholar 

  12. Falini B, Bolli N, Shan J, Martelli MP, Liso A, Pucciarini A et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 2006; 107: 4514–4523.

    Article  CAS  Google Scholar 

  13. Herrera JE, Savkur R, Olson MO . The ribonuclease activity of nucleolar protein B23. Nucleic Acids Res 1995; 23: 3974–3979.

    Article  CAS  Google Scholar 

  14. Savkur RS, Olson MO . Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res 1998; 26: 4508–4515.

    Article  CAS  Google Scholar 

  15. Yu Y, Maggi Jr LB, Brady SN, Apicelli AJ, Dai MS, Lu H et al. Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol Cell Biol 2006; 26: 3798–3809.

    Article  CAS  Google Scholar 

  16. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 2000; 103: 127–140.

    Article  CAS  Google Scholar 

  17. Colombo E, Bonetti P, Lazzerini DE, Martinelli P, Zamponi R, Marine JC et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 2005; 25: 8874–8886.

    Article  CAS  Google Scholar 

  18. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 2005; 437: 147–153.

    Article  CAS  Google Scholar 

  19. Bertwistle D, Sugimoto M, Sherr CJ . Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 2004; 24: 985–996.

    Article  CAS  Google Scholar 

  20. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 2004; 5: 465–475.

    Article  CAS  Google Scholar 

  21. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG . Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002; 4: 529–533.

    Article  CAS  Google Scholar 

  22. Deguchi K, Gilliland DG . Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML. Leukemia 2002; 16: 740–744.

    Article  CAS  Google Scholar 

  23. Kelly LM, Gilliland DG . Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–198.

    Article  CAS  Google Scholar 

  24. Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J . Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2005; 19: 2232–2240.

    Article  CAS  Google Scholar 

  25. Pedersen-Bjergaard J, Christiansen DH, Desta F, Andersen MK . Alternative genetic pathways and cooperating genetic abnormalities in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2006; 20: 1943–1949.

    Article  CAS  Google Scholar 

  26. Pedersen-Bjergaard J, Rowley JD . The balanced and the unbalanced chromosome aberrations of acute myeloid leukemia may develop in different ways and may contribute differently to malignant transformation. Blood 1994; 83: 2780–2786.

    CAS  Google Scholar 

  27. Christiansen DH, Desta F, Andersen MK, Pedersen-Bjergaard J . Mutations of the PTPN11 gene in therapy-related MDS and AML with rare balanced chromosome translocations. Genes Chromosomes Cancer 2007; 46: 517–521.

    Article  CAS  Google Scholar 

  28. Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 2004; 104: 1474–1481.

    Article  CAS  Google Scholar 

  29. Falini B, Nicoletti I, Martelli MF, Mecucci C . Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2007; 109: 874–885.

    Article  CAS  Google Scholar 

  30. Shiseki M, Kitagawa Y, Wang YH, Yoshinaga K, Kondo T, Kuroiwa H et al. Lack of nucleophosmin mutation in patients with myelodysplastic syndrome and acute myeloid leukemia with chromosome 5 abnormalities. Leuk Lymphoma 2007; 48: 2141–2144.

    Article  CAS  Google Scholar 

  31. Falini B . Any role for the nucleophosmin (NPM1) gene in myelodysplastic syndromes and acute myeloid leukemia with chromosome 5 abnormalities? Leuk Lymphoma 2007; 48: 2093–2095.

    Article  CAS  Google Scholar 

  32. Boice Jr JD, Blettner M, Kleinerman RA, Stovall M, Moloney WC, Engholm G et al. Radiation dose and leukemia risk in patients treated for cancer of the cervix. J Natl Cancer Inst 1987; 79: 1295–1311.

    Google Scholar 

  33. Curtis RE, Boice Jr JD, Stovall M, Bernstein L, Greenberg RS, Flannery JT et al. Risk of leukemia after chemotherapy and radiation treatment for breast cancer. N Engl J Med 1992; 326: 1745–1751.

    Article  CAS  Google Scholar 

  34. Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH . Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2008; advance online publication, 17 January 2008.

Download references

Acknowledgements

We thank Pia Maj-Britt Bech for her technical assistance and Severin Olesen Larsen for his help with the statistical calculations. This work was supported by grants from The Danish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M T Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, M., Andersen, M., Christiansen, D. et al. NPM1 mutations in therapy-related acute myeloid leukemia with uncharacteristic features. Leukemia 22, 951–955 (2008). https://doi.org/10.1038/leu.2008.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.17

Keywords

This article is cited by

Search

Quick links