Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Perivascular adipose tissue: epiphenomenon or local risk factor?

Abstract

Obesity is associated with an increased cardiovascular risk, but the mechanisms underlying the link between increased body weight and vascular disease are incompletely understood. Over the past 15 years, perivascular adipose tissue has emerged as active component of the vessel wall involved in vascular homeostasis. However, perivascular adipose tissue can adopt detrimental properties under the influence of obesity and other factors and contribute actively to the pathophysiology of cardiovascular disease. Conversely, changes of the vessel wall may negatively affect perivascular adipose tissue qualities. In this review, we will discuss the recent literature on the possible direct and indirect connections between perivascular fat alterations and cardiovascular pathologies. In addition to clinical evidence on the association between perivascular fat mass and morphology and anthropometric measures of obesity or the reciprocal connection between perivascular fat and cardiometabolic risk factors and disease, special emphasis will be placed on results in rodent and other models and the possible direct contribution of local fat depots to vascular dysfunction, neointima formation or atherosclerosis. We will briefly highlight results from human and murine genome, miRNome and proteome-wide expression analyses of potential candidate mediators involved in its paracrine activities and present data on how the cardiovascular risk factors obesity, age or diabetes, but also the preventive measures weight loss or exercise impact on perivascular expression patterns. A better understanding of this unique adipose tissue depot, its properties and regulatory mechanisms, may create opportunities for novel diagnostic and therapeutic strategies to combat the cardiovascular consequences of increased body weight.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003; 88: 5163–5168.

    Article  CAS  PubMed  Google Scholar 

  2. de Vos AM, Prokop M, Roos CJ, Meijs MF, van der Schouw YT, Rutten A et al. Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur Heart J 2008; 29: 777–783.

    Article  PubMed  Google Scholar 

  3. Sarin S, Wenger C, Marwaha A, Qureshi A, Go BD, Woomert CA et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol 2008; 102: 767–771.

    Article  PubMed  Google Scholar 

  4. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 2008; 117: 605–613.

    Article  PubMed  Google Scholar 

  5. Saura D, Oliva MJ, Rodriguez D, Pascual-Figal DA, Hurtado JA, Pinar E et al. Reproducibility of echocardiographic measurements of epicardial fat thickness. Int J Cardiol 2010; 141: 311–313.

    Article  PubMed  Google Scholar 

  6. Gorter PM, de Vos AM, van der Graaf Y, Stella PR, Doevendans PA, Meijs MF et al. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol 2008; 102: 380–385.

    Article  CAS  PubMed  Google Scholar 

  7. Britton KA, Pedley A, Massaro JM, Corsini EM, Murabito JM, Hoffmann U et al. Prevalence, distribution, and risk factor correlates of high thoracic periaortic fat in the Framingham Heart Study. J Am Heart Assoc 2012; 1: e004200.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schlett CL, Massaro JM, Lehman SJ, Bamberg F, O'Donnell CJ, Fox CS et al. Novel measurements of periaortic adipose tissue in comparison to anthropometric measures of obesity, and abdominal adipose tissue. Int J Obes 2009; 33: 226–232.

    Article  CAS  Google Scholar 

  9. Lehman SJ, Massaro JM, Schlett CL, O'Donnell CJ, Hoffmann U, Fox CS . Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: the Framingham Heart Study. Atherosclerosis 2010; 210: 656–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lakatta EG, Levy D . Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 2003; 107: 346–354.

    Article  PubMed  Google Scholar 

  11. Hubert HB, Feinleib M, McNamara PM, Castelli WP . Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983; 67: 968–977.

    Article  CAS  PubMed  Google Scholar 

  12. Iacobellis G, Leonetti F . Epicardial adipose tissue and insulin resistance in obese subjects. J Clin Endocrinol Metab 2005; 90: 6300–6302.

    Article  CAS  PubMed  Google Scholar 

  13. Konishi M, Sugiyama S, Sugamura K, Nozaki T, Ohba K, Matsubara J et al. Association of pericardial fat accumulation rather than abdominal obesity with coronary atherosclerotic plaque formation in patients with suspected coronary artery disease. Atherosclerosis 2010; 209: 573–578.

    Article  CAS  PubMed  Google Scholar 

  14. Britton KA, Massaro JM, Murabito JM, Kreger BE, Hoffmann U, Fox CS . Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol 2013; 62: 921–925.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pierdomenico SD, Pierdomenico AM, Cuccurullo F, Iacobellis G . Meta-analysis of the relation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am J Cardiol 2013; 111: 73–78.

    Article  PubMed  Google Scholar 

  16. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29: 781–786.

    Article  CAS  PubMed  Google Scholar 

  17. Tabata M, Kadomatsu T, Fukuhara S, Miyata K, Ito Y, Endo M et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab 2009; 10: 178–188.

    Article  CAS  PubMed  Google Scholar 

  18. Tian Z, Miyata K, Tazume H, Sakaguchi H, Kadomatsu T, Horio E et al. Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury. J Mol Cell Cardiol 2013; 57: 1–12.

    Article  CAS  PubMed  Google Scholar 

  19. Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G . Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest 1995; 96: 786–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rittig K, Staib K, Machann J, Bottcher M, Peter A, Schick F et al. Perivascular fatty tissue at the brachial artery is linked to insulin resistance but not to local endothelial dysfunction. Diabetologia 2008; 51: 2093–2099.

    Article  CAS  PubMed  Google Scholar 

  21. Ruderman NB, Schneider SH, Berchtold P . The ‘metabolically-obese,’ normal-weight individual. Am J Clin Nutr 1981; 34: 1617–1621.

    Article  CAS  PubMed  Google Scholar 

  22. Ding J, Hsu FC, Harris TB, Liu Y, Kritchevsky SB, Szklo M et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2009; 90: 499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimabukuro M, Hirata Y, Tabata M, Dagvasumberel M, Sato H, Kurobe H et al. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33: 1077–1084.

    Article  CAS  PubMed  Google Scholar 

  24. Oka T, Yamamoto H, Ohashi N, Kitagawa T, Kunita E, Utsunomiya H et al. Association between epicardial adipose tissue volume and characteristics of non-calcified plaques assessed by coronary computed tomographic angiography. Int J Cardiol 2012; 161 (1): 45–49.

    Article  PubMed  Google Scholar 

  25. Alexopoulos N, McLean DS, Janik M, Arepalli CD, Stillman AE, Raggi P . Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 2010; 210: 150–154.

    Article  CAS  PubMed  Google Scholar 

  26. Gorter PM, van Lindert AS, de Vos AM, Meijs MF, van der Graaf Y, Doevendans PA et al. Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis 2008; 197: 896–903.

    Article  CAS  PubMed  Google Scholar 

  27. Chatterjee TK, Aronow BJ, Tong WS, Manka D, Tang Y, Bogdanov VY et al. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol Genomics 2013; 45: 697–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Henrichot E, Juge-Aubry CE, Pernin A, Pache JC, Velebit V, Dayer JM et al. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol 2005; 25: 2594–2599.

    Article  CAS  PubMed  Google Scholar 

  29. Mahabadi AA, Reinsch N, Lehmann N, Altenbernd J, Kalsch H, Seibel RM et al. Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: a segment analysis. Atherosclerosis 2010; 211: 195–199.

    Article  CAS  PubMed  Google Scholar 

  30. Maurovich-Horvat P, Kallianos K, Engel LC, Szymonifka J, Fox CS, Hoffmann U et al. Influence of pericoronary adipose tissue on local coronary atherosclerosis as assessed by a novel MDCT volumetric method. Atherosclerosis 2011; 219: 151–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verhagen SN, Vink A, van der Graaf Y, Visseren FL . Coronary perivascular adipose tissue characteristics are related to atherosclerotic plaque size and composition. A post-mortem study. Atherosclerosis 2012; 225: 99–104.

    Article  CAS  PubMed  Google Scholar 

  32. Park JS, Choi BJ, Choi SY, Yoon MH, Hwang GS, Tahk SJ et al. Echocardiographically measured epicardial fat predicts restenosis after coronary stenting. Scand Cardiovasc J 2013; 47: 297–302.

    Article  PubMed  Google Scholar 

  33. Bays HE . Adiposopathy is ‘sick fat’ a cardiovascular disease? J Am Coll Cardiol 2011; 57: 2461–2473.

    Article  CAS  PubMed  Google Scholar 

  34. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003; 108: 2460–2466.

    Article  PubMed  Google Scholar 

  35. Gaborit B, Venteclef N, Ancel P, Pelloux V, Gariboldi V, Leprince P et al. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc Res 2015; 108: 62–73.

    Article  CAS  PubMed  Google Scholar 

  36. Vacca M, Di EM, Cariello M, Graziano G, D'Amore S, Petridis FD et al. Integrative miRNA and whole-genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis. Cardiovasc Res 2016; 109: 228–239.

    Article  CAS  PubMed  Google Scholar 

  37. Salgado-Somoza A, Teijeira-Fernandez E, Fernandez AL, Gonzalez-Juanatey JR, Eiras S . Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am J Physiol Heart Circ Physiol 2010; 299: H202–H209.

    Article  CAS  PubMed  Google Scholar 

  38. Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY et al. Depot-specific overexpression of proinflammatory, redox, endothelial cell, and angiogenic genes in epicardial fat adjacent to severe stable coronary atherosclerosis. Metab Syndr Relat Disord 2011; 9: 433–439.

    Article  CAS  PubMed  Google Scholar 

  39. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res 2009; 104: 541–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vishvanath L, MacPherson KA, Hepler C, Wang QA, Shao M, Spurgin SB et al. Pdgfrbeta+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab 2016; 23: 350–359.

    Article  CAS  PubMed  Google Scholar 

  41. Okamoto E, Couse T, De LH, Vinten-Johansen J, Goodman RB, Scott NA et al. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 2001; 104: 2228–2235.

    Article  CAS  PubMed  Google Scholar 

  42. Bot I, de Jager SC, Zernecke A, Lindstedt KA, van Berkel TJ, Weber C et al. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation 2007; 115: 2516–2525.

    Article  CAS  PubMed  Google Scholar 

  43. Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A . Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 1996; 94: 1655–1664.

    Article  CAS  PubMed  Google Scholar 

  44. Verhagen SN, Buijsrogge MP, Vink A, van Herwerden LA, van der Graaf Y, Visseren FL . Secretion of adipocytokines by perivascular adipose tissue near stenotic and non-stenotic coronary artery segments in patients undergoing CABG. Atherosclerosis 2014; 233: 242–247.

    Article  CAS  PubMed  Google Scholar 

  45. Drosos I, Chalikias G, Pavlaki M, Kareli D, Epitropou G, Bougioukas G et al. Differences between perivascular adipose tissue surrounding the heart and the internal mammary artery: possible role for the leptin-inflammation-fibrosis-hypoxia axis. Clin Res Cardiol 2016; 105: 887–900.

    Article  CAS  PubMed  Google Scholar 

  46. Longchamp A, Tao M, Bartelt A, Ding K, Lynch L, Hine C et al. Surgical injury induces local and distant adipose tissue browning. Adipocyte 2016; 5: 163–174.

    Article  PubMed  Google Scholar 

  47. Manka D, Chatterjee TK, Stoll LL, Basford JE, Konaniah ES, Srinivasan R et al. Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol 2014; 34: 1723–1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang H, Huang Y, Bu D, Chen S, Tang C, Wang G et al. Endogenous sulfur dioxide is a novel adipocyte-derived inflammatory inhibitor. Sci Rep 2016; 6: 27026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Padilla J, Jenkins NT, Vieira-Potter VJ, Laughlin MH . Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues. Am J Physiol Regul Integr Comp Physiol 2013; 304: R543–R552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fleenor BS, Eng JS, Sindler AL, Pham BT, Kloor JD, Seals DR . Superoxide signaling in perivascular adipose tissue promotes age-related artery stiffness. Aging Cell 2014; 13: 576–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barandier C, Montani JP, Yang Z . Mature adipocytes and perivascular adipose tissue stimulate vascular smooth muscle cell proliferation: effects of aging and obesity. Am J Physiol Heart Circ Physiol 2005; 289: H1807–H1813.

    Article  CAS  PubMed  Google Scholar 

  52. Soltis EE, Cassis LA . Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness. Clin Exp Hypertens A 1991; 13: 277–296.

    CAS  PubMed  Google Scholar 

  53. Lohn M, Dubrovska G, Lauterbach B, Luft FC, Gollasch M, Sharma AM . Periadventitial fat releases a vascular relaxing factor. FASEB J 2002; 16: 1057–1063.

    Article  PubMed  Google Scholar 

  54. Takemori K, Gao YJ, Ding L, Lu C, Su LY, An WS et al. Elevated blood pressure in transgenic lipoatrophic mice and altered vascular function. Hypertension 2007; 49: 365–372.

    Article  CAS  PubMed  Google Scholar 

  55. Zou L, Wang W, Liu S, Zhao X, Lyv Y, Du C et al. Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice. Biochim Biophys Acta 2016; 1862: 182–191.

    Article  CAS  PubMed  Google Scholar 

  56. Ketonen J, Shi J, Martonen E, Mervaala E . Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice. Circ J 2010; 74: 1479–1487.

    Article  CAS  PubMed  Google Scholar 

  57. Galvez B, de CJ, Herold D, Dubrovska G, Arribas S, Gonzalez MC et al. Perivascular adipose tissue and mesenteric vascular function in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 2006; 26: 1297–1302.

    Article  CAS  PubMed  Google Scholar 

  58. Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL . Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension 2009; 54: 1384–1392.

    Article  CAS  PubMed  Google Scholar 

  59. Aghamohammadzadeh R, Unwin RD, Greenstein AS, Heagerty AM . Effects of obesity on perivascular adipose tissue vasorelaxant function: nitric oxide, inflammation and elevated systemic blood pressure. J Vasc Res 2015; 52: 299–305.

    Article  CAS  PubMed  Google Scholar 

  60. Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A et al. Uncoupling of endothelial nitric oxide synthase in perivascular adipose tissue of diet-induced obese mice. Arterioscler Thromb Vasc Biol 2016; 36: 78–85.

    Article  CAS  PubMed  Google Scholar 

  61. Meyer MR, Fredette NC, Barton M, Prossnitz ER . Regulation of vascular smooth muscle tone by adipose-derived contracting factor. PLoS One 2013; 8: e79245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP et al. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation 2013; 128: 9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Withers SB, Agabiti-Rosei C, Livingstone DM, Little MC, Aslam R, Malik RA et al. Macrophage activation is responsible for loss of anticontractile function in inflamed perivascular fat. Arterioscler Thromb Vasc Biol 2011; 31: 908–913.

    Article  CAS  PubMed  Google Scholar 

  64. Payne GA, Borbouse L, Kumar S, Neeb Z, Alloosh M, Sturek M et al. Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-beta pathway. Arterioscler Thromb Vasc Biol 2010; 30: 1711–1717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J 2016; 30: 1987–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Engeli S, Schling P, Gorzelniak K, Boschmann M, Janke J, Ailhaud G et al. The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol 2003; 35: 807–825.

    Article  CAS  PubMed  Google Scholar 

  67. Schroeter MR, Eschholz N, Herzberg S, Jerchel I, Leifheit-Nestler M, Czepluch FS et al. Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation. Arterioscler Thromb Vasc Biol 2013; 33: 980–987.

    Article  CAS  PubMed  Google Scholar 

  68. Watts SW, Dorrance AM, Penfold ME, Rourke JL, Sinal CJ, Seitz B et al. Chemerin connects fat to arterial contraction. Arterioscler Thromb Vasc Biol 2013; 33: 1320–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takaoka M, Nagata D, Kihara S, Shimomura I, Kimura Y, Tabata Y et al. Periadventitial adipose tissue plays a critical role in vascular remodeling. Circ Res 2009; 105: 906–911.

    Article  CAS  PubMed  Google Scholar 

  70. Karastergiou K, Evans I, Ogston N, Miheisi N, Nair D, Kaski JC et al. Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells. Arterioscler Thromb Vasc Biol 2010; 30: 1340–1346.

    Article  CAS  PubMed  Google Scholar 

  71. Hou N, Liu Y, Han F, Wang D, Hou X, Hou S et al. Irisin improves perivascular adipose tissue dysfunction via regulation of the heme oxygenase-1/adiponectin axis in diet-induced obese mice. J Mol Cell Cardiol 2016; 99: 188–196.

    Article  CAS  PubMed  Google Scholar 

  72. Li H, Wang YP, Zhang LN, Tian G . Perivascular adipose tissue-derived leptin promotes vascular smooth muscle cell phenotypic switching via p38 mitogen-activated protein kinase in metabolic syndrome rats. Exp Biol Med 2014; 239: 954–965.

    Article  CAS  Google Scholar 

  73. Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 2013; 127: 2209–2221.

    Article  CAS  PubMed  Google Scholar 

  74. Moos MP, John N, Grabner R, Nossmann S, Gunther B, Vollandt R et al. The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2005; 25: 2386–2391.

    Article  CAS  PubMed  Google Scholar 

  75. Hagita S, Osaka M, Shimokado K, Yoshida M . Adipose inflammation initiates recruitment of leukocytes to mouse femoral artery: role of adipo-vascular axis in chronic inflammation. PLoS ONE 2011; 6: e19871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ohman MK, Luo W, Wang H, Guo C, Abdallah W, Russo HM et al. Perivascular visceral adipose tissue induces atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis 2011; 219: 33–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li C, Wang Z, Wang C, Ma Q, Zhao Y . Perivascular adipose tissue-derived adiponectin inhibits collar-induced carotid atherosclerosis by promoting macrophage autophagy. PLoS ONE 2015; 10: e0124031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Irie D, Kawahito H, Wakana N, Kato T, Kishida S, Kikai M et al. Transplantation of periaortic adipose tissue from angiotensin receptor blocker-treated mice markedly ameliorates atherosclerosis development in apoE-/- mice. J Renin Angiotensin Aldosterone Syst 2015; 16: 67–78.

    Article  CAS  PubMed  Google Scholar 

  79. McKenney ML, Schultz KA, Boyd JH, Byrd JP, Alloosh M, Teague SD et al. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 2014; 9: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 2012; 126: 1067–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rittig K, Dolderer JH, Balletshofer B, Machann J, Schick F, Meile T et al. The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells. Diabetologia 2012; 55: 1514–1525.

    Article  CAS  PubMed  Google Scholar 

  82. Wakana N, Irie D, Kikai M, Terada K, Yamamoto K, Kawahito H et al. Maternal high-fat diet exaggerates atherosclerosis in adult offspring by augmenting periaortic adipose tissue-specific proinflammatory response. Arterioscler Thromb Vasc Biol 2015; 35: 558–569.

    Article  CAS  PubMed  Google Scholar 

  83. Zaborska KE, Wareing M, Edwards G, Austin C . Loss of anti-contractile effect of perivascular adipose tissue in offspring of obese rats. Int J Obes 2016; 40: 1205–1214.

    Article  CAS  Google Scholar 

  84. Iacobellis G, Singh N, Wharton S, Sharma AM . Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity 2008; 16: 1693–1697.

    Article  PubMed  Google Scholar 

  85. Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F et al. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol 2013; 62: 128–135.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bussey CE, Withers SB, Aldous RG, Edwards G, Heagerty AM . Obesity-related perivascular adipose tissue damage is reversed by sustained weight loss in the rat. Arterioscler Thromb Vasc Biol 2016; 36: 1377–1385.

    Article  CAS  PubMed  Google Scholar 

  87. Reifenberger MS, Turk JR, Newcomer SC, Booth FW, Laughlin MH . Perivascular fat alters reactivity of coronary artery: effects of diet and exercise. Med Sci Sports Exerc 2007; 39: 2125–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bunker AK, Laughlin MH . Influence of exercise and perivascular adipose tissue on coronary artery vasomotor function in a familial hypercholesterolemic porcine atherosclerosis model. J Appl Physiol 2010; 108: 490–497.

    Article  PubMed  Google Scholar 

  89. Zeng ZH, Zhang ZH, Luo BH, He WK, Liang LY, He CC et al. The functional changes of the perivascular adipose tissue in spontaneously hypertensive rats and the effects of atorvastatin therapy. Clin Exp Hypertens 2009; 31: 355–363.

    Article  CAS  PubMed  Google Scholar 

  90. Sun X, Hou N, Han F, Guo Y, Hui Z, Du G et al. Effect of high free fatty acids on the anti-contractile response of perivascular adipose tissue in rat aorta. J Mol Cell Cardiol 2013; 63: 169–174.

    Article  CAS  PubMed  Google Scholar 

  91. Xia N, Weisenburger S, Koch E, Burkart M, Reifenberg G, Förstermann U et al. Restoration of perivascular adipose tissue function in diet-induced obese mice without changing bodyweight. Br J Pharmacol 2017; e-pub ahead of print 5 January 2017 doi:10.1111/bph.13703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Molenaar EA, Massaro JM, Jacques PF, Pou KM, Ellison RC, Hoffmann U et al. Association of lifestyle factors with abdominal subcutaneous and visceral adiposity: the Framingham Heart Study. Diabetes Care 2009; 32: 505–510.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gao YJ, Holloway AC, Zeng ZH, Lim GE, Petrik JJ, Foster WG et al. Prenatal exposure to nicotine causes postnatal obesity and altered perivascular adipose tissue function. Obes Res 2005; 13: 687–692.

    Article  PubMed  Google Scholar 

  94. Rossi C, Santini E, Chiarugi M, Salvati A, Comassi M, Vitolo E et al. The complex P2X7 receptor/inflammasome in perivascular fat tissue of heavy smokers. Eur J Clin Invest 2014; 44: 295–302.

    Article  CAS  PubMed  Google Scholar 

  95. Tao M, Yu P, Nguyen BT, Mizrahi B, Savion N, Kolodgie FD et al. Locally applied leptin induces regional aortic wall degeneration preceding aneurysm formation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2013; 33: 311–320.

    Article  CAS  PubMed  Google Scholar 

  96. Gillum MP, Kotas ME, Erion DM, Kursawe R, Chatterjee P, Nead KT et al. SirT1 regulates adipose tissue inflammation. Diabetes 2011; 60: 3235–3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Virdis A, Duranti E, Rossi C, Dell'Agnello U, Santini E, Anselmino M et al. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J 2015; 36: 784–794.

    Article  CAS  PubMed  Google Scholar 

  98. Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, Chiu CC et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes 2008; 32: 268–274.

    Article  CAS  Google Scholar 

  99. Langheim S, Dreas L, Veschini L, Maisano F, Foglieni C, Ferrarello S et al. Increased expression and secretion of resistin in epicardial adipose tissue of patients with acute coronary syndrome. Am J Physiol Heart Circ Physiol 2010; 298: H746–H753.

    Article  PubMed  Google Scholar 

  100. Lohmann C, Schafer N, von LT, Sokrates Stein MA, Boren J, Rutti S et al. Atherosclerotic mice exhibit systemic inflammation in periadventitial and visceral adipose tissue, liver, and pancreatic islets. Atherosclerosis 2009; 207: 360–367.

    Article  CAS  PubMed  Google Scholar 

  101. Kawahito H, Yamada H, Irie D, Kato T, Akakabe Y, Kishida S et al. Periaortic adipose tissue-specific activation of the renin-angiotensin system contributes to atherosclerosis development in uninephrectomized apoE-/- mice. Am J Physiol Heart Circ Physiol 2013; 305: H667–H675.

    Article  CAS  PubMed  Google Scholar 

  102. Miao CY, Li ZY . The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br J Pharmacol 2012; 165: 643–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gil-Ortega M, Condezo-Hoyos L, Garcia-Prieto CF, Arribas SM, Gonzalez MC, Aranguez I et al. Imbalance between pro and anti-oxidant mechanisms in perivascular adipose tissue aggravates long-term high-fat diet-derived endothelial dysfunction. PLoS ONE 2014; 9: e95312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schlich R, Willems M, Greulich S, Ruppe F, Knoefel WT, Ouwens DM et al. VEGF in the crosstalk between human adipocytes and smooth muscle cells: depot-specific release from visceral and perivascular adipose tissue. Mediators Inflamm 2013; 2013: 982458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ruan CC, Zhu DL, Chen QZ, Chen J, Guo SJ, Li XD et al. Perivascular adipose tissue-derived complement 3 is required for adventitial fibroblast functions and adventitial remodeling in deoxycorticosterone acetate-salt hypertensive rats. Arterioscler Thromb Vasc Biol 2010; 30: 2568–2574.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Marina Janocha for expert technical assistance. This work was supported by a grant from the German Research Foundation (Deutsche Forschungsgemeinschaft; Scha 808/7-1) to KS and by National and European Union funds from the ‘Operational Programme Education and Lifelong Learning (NSRF 2007–2013) MIS 379527’ to SK and KS. The work of SK was supported by the Federal Ministry of Education and Research (BMBF; 01EO1003 and 01EO1503) in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Schäfer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, K., Drosos, I. & Konstantinides, S. Perivascular adipose tissue: epiphenomenon or local risk factor?. Int J Obes 41, 1311–1323 (2017). https://doi.org/10.1038/ijo.2017.121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.121

This article is cited by

Search

Quick links