Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Changing the adenovirus fiber for retaining gene delivery efficacy in the presence of neutralizing antibodies

Abstract

Prior infection has primed most adult humans for a rapid neutralizing antibody (NAb) response when re-exposed to adenovirus. NAb induction can severely limit the efficacy of systemic re-administration of adenoviral gene therapy. We hypothesized that changing the fiber knob could overcome NAb. Immune-competent mice were exposed to serotype 5 adenovirus (Ad5)(GL), Ad5/3luc1, Ad5lucRGD or Ad5pK7(GL). Mice immunized with Ad5(GL) featured reduced intravenous Ad5(GL) gene transfer to most organs, including the liver, lung and spleen. Ad5(GL) gene transfer was affected much less by exposure to capsid-modified viruses. Anti-Ad5(GL) NAb blocked intravenous Ad5(GL) gene transfer to orthotopic lung cancer xenografts, whereas capsid-modified viruses were not affected. When gene transfer to fresh cancer and normal lung explants was analyzed, we found that capsid-modified viruses allowed effective gene delivery to tumors in the presence of anti-Ad5(GL) NAb, whereas Ad5(GL) was blocked. In contrast, crossblocking by NAbs induced by different viruses affected gene delivery to normal human lung explants, suggesting the importance of non-fiber-knob-mediated infection mechanisms. We conclude that changing the adenovirus fiber knob is sufficient to allow a relative degree of escape from preexisting NAb. If confirmed in trials, this approach might improve the efficacy of re-administration of adenoviral gene therapy to humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004; 10: 967–972.

    Article  CAS  PubMed  Google Scholar 

  2. Peng Z . Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16: 1016–1027.

    Article  CAS  PubMed  Google Scholar 

  3. Yu W, Fang H . Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7: 141–148.

    Article  PubMed  Google Scholar 

  4. Bauerschmitz GJ, Barker SD, Hemminki A . Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol 2002; 21: 1161–1174.

    CAS  PubMed  Google Scholar 

  5. Crompton AM, Kirn DH . From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets 2007; 7: 133–139.

    Article  CAS  PubMed  Google Scholar 

  6. Raki M, Rein DT, Kanerva A, Hemminki A . Gene transfer approaches for gynecological diseases. Mol Ther 2006; 14: 154–163.

    Article  CAS  PubMed  Google Scholar 

  7. Bangari DS, Mittal SK . Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther 2006; 6: 215–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, Yu DC, Charlton D, Henderson DR . Pre-existent adenovirus antibody inhibits systemic toxicity and antitumor activity of CN706 in the nude mouse LNCaP xenograft model: implications and proposals for human therapy. Hum Gene Ther 2000; 11: 1553–1567.

    Article  CAS  PubMed  Google Scholar 

  9. Ranki T, Sarkioja M, Hakkarainen T, von Smitten K, Kanerva A, Hemminki A . Systemic efficacy of oncolytic adenoviruses in imageable orthotopic models of hormone refractory metastatic breast cancer. Int J Cancer 2007; 121: 165–174.

    Article  CAS  PubMed  Google Scholar 

  10. Baker AH, McVey JH, Waddington SN, Di Paolo NC, Shayakhmetov DM . The influence of blood on in vivo adenovirus bio-distribution and transduction. Mol Ther 2007; 15: 1410–1416.

    Article  CAS  PubMed  Google Scholar 

  11. Gahery-Segard H, Farace F, Godfrin D, Gaston J, Lengagne R, Tursz T et al. Immune response to recombinant capsid proteins of adenovirus in humans: antifiber and anti-penton base antibodies have a synergistic effect on neutralizing activity. J Virol 1998; 72: 2388–2397.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rahman A, Tsai V, Goudreau A, Shinoda JY, Wen SF, Ramachandra M et al. Specific depletion of human anti-adenovirus antibodies facilitates transduction in an in vivo model for systemic gene therapy. Mol Ther 2001; 3: 768–778.

    Article  CAS  PubMed  Google Scholar 

  13. Hashimoto M, Boyer JL, Hackett NR, Wilson JM, Crystal RG . Induction of protective immunity to anthrax lethal toxin with a nonhuman primate adenovirus-based vaccine in the presence of preexisting anti-human adenovirus immunity. Infect Immun 2005; 73: 6885–6891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hemminki A, Belousova N, Zinn KR, Liu B, Wang M, Chaudhuri TR et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther 2001; 4: 223–231.

    Article  CAS  PubMed  Google Scholar 

  15. Hemminki A, Zinn KR, Liu B, Chaudhuri TR, Desmond RA, Rogers BE et al. In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus. J Natl Cancer Inst 2002; 94: 741–749.

    Article  CAS  PubMed  Google Scholar 

  16. Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther 2002; 5: 695–704.

    Article  CAS  PubMed  Google Scholar 

  17. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 2003; 8: 449–458.

    Article  CAS  PubMed  Google Scholar 

  18. Shinoura N, Yoshida Y, Tsunoda R, Ohashi M, Zhang W, Asai A et al. Highly augmented cytopathic effect of a fiber-mutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Res 1999; 59: 3411–3416.

    CAS  PubMed  Google Scholar 

  19. Kanerva A, Hemminki A . Adenoviruses for treatment of cancer. Ann Med 2005; 37: 33–43.

    Article  CAS  PubMed  Google Scholar 

  20. Kangasniemi L, Kiviluoto T, Kanerva A, Raki M, Ranki T, Sarkioja M et al. Infectivity-enhanced adenoviruses deliver efficacy in clinical samples and orthotopic models of disseminated gastric cancer. Clin Cancer Res 2006; 12: 3137–3144.

    Article  CAS  PubMed  Google Scholar 

  21. Ni S, Gaggar A, Di Paolo N, Li ZY, Liu Y, Strauss R et al. Evaluation of adenovirus vectors containing serotype 35 fibers for tumor targeting. Cancer Gene Ther 2006; 13: 1072–1081.

    Article  CAS  PubMed  Google Scholar 

  22. Bauerschmitz GJ, Lam JT, Kanerva A, Suzuki K, Nettelbeck DM, Dmitriev I et al. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res 2002; 62: 1266–1270.

    CAS  PubMed  Google Scholar 

  23. Sarkioja M, Kanerva A, Salo J, Kangasniemi L, Eriksson M, Raki M et al. Noninvasive imaging for evaluation of the systemic delivery of capsid-modified adenoviruses in an orthotopic model of advanced lung cancer. Cancer 2006; 107: 1578–1588.

    Article  PubMed  Google Scholar 

  24. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res 2002; 8: 275–280.

    CAS  PubMed  Google Scholar 

  25. Hemminki A, Wang M, Desmond RA, Strong TV, Alvarez RD, Curiel DT . Serum and ascites neutralizing antibodies in ovarian cancer patients treated with intraperitoneal adenoviral gene therapy. Hum Gene Ther 2002; 13: 1505–1514.

    Article  CAS  PubMed  Google Scholar 

  26. Tuve S, Wang H, Ware C, Liu Y, Gaggar A, Bernt K et al. A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J Virol 2006; 80: 12109–12120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Albinsson B, Kidd AH . Adenovirus type 41 lacks an RGD alpha(v)-integrin binding motif on the penton base and undergoes delayed uptake in A549 cells. Virus Res 1999; 64: 125–136.

    Article  CAS  PubMed  Google Scholar 

  28. Hemminki A, Kanerva A, Kremer EJ, Bauerschmitz GJ, Smith BF, Liu B et al. A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 2003; 7: 163–173.

    Article  CAS  PubMed  Google Scholar 

  29. Smith TA, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M et al. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 2003; 14: 1595–1604.

    Article  CAS  PubMed  Google Scholar 

  30. Smith TA, Idamakanti N, Rollence ML, Marshall-Neff J, Kim J, Mulgrew K et al. Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 2003; 14: 777–787.

    Article  CAS  PubMed  Google Scholar 

  31. Bayo-Puxan N, Cascallo M, Gros A, Huch M, Fillat C, Alemany R . Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. J Gen Virol 2006; 87: 2487–2495.

    Article  CAS  PubMed  Google Scholar 

  32. McDonald DM, Choyke PL . Imaging of angiogenesis: from microscope to clinic. Nat Med 2003; 9: 713–725.

    Article  CAS  PubMed  Google Scholar 

  33. Ihrcke NS, Wrenshall LE, Lindman BJ, Platt JL . Role of heparan sulfate in immune system–blood vessel interactions. Immunol Today 1993; 14: 500–505.

    Article  CAS  PubMed  Google Scholar 

  34. Belousova N, Korokhov N, Krendelshchikova V, Simonenko V, Mikheeva G, Triozzi PL et al. Genetically targeted adenovirus vector directed to CD40-expressing cells. J Virol 2003; 77: 11367–11377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gall J, Kass-Eisler A, Leinwand L, Falck-Pedersen E . Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. J Virol 1996; 70: 2116–2123.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Roberts DM, Nanda A, Havenga MJ, Abbink P, Lynch DM, Ewald BA et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006; 441: 239–243.

    Article  CAS  PubMed  Google Scholar 

  37. Stone D, Ni S, Li ZY, Gaggar A, DiPaolo N, Feng Q et al. Development and assessment of human adenovirus type 11 as a gene transfer vector. J Virol 2005; 79: 5090–5104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lemiale F, Haddada H, Nabel GJ, Brough DE, King CR, Gall JG . Novel adenovirus vaccine vectors based on the enteric-tropic serotype 41. Vaccine 2007; 25: 2074–2084.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by EU FP6 THERADPOX and APOTHERAPY, HUCH Research Funds (EVO), Sigrid Juselius Foundation, Academy of Finland, Emil Aaltonen Foundation, Finnish Cancer Society, University of Helsinki, Schering Research Foundation (unrestricted), Finnish Cultural Foundation, Biomedicum Helsinki Foundation and Foundation of Jalmari and Rauha Ahokas. Akseli Hemminki is K Albin Johansson Research Professor of the Foundation for the Finnish Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Hemminki.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Särkioja, M., Pesonen, S., Raki, M. et al. Changing the adenovirus fiber for retaining gene delivery efficacy in the presence of neutralizing antibodies. Gene Ther 15, 921–929 (2008). https://doi.org/10.1038/gt.2008.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.56

Keywords

This article is cited by

Search

Quick links