Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic β-cells to correct diabetes in allogeneic mice

Abstract

The effectiveness of genetic engineering with lentivectors to protect transplanted cells from allogeneic rejection was examined using, as a model, type 1 diabetes treatment with β-cell transplantation, whose widespread use has been limited by the requirement for sustained immunosuppressive treatment to prevent graft rejection. We examined whether lentivectors expressing select immunosuppressive proteins encoded by the adenoviral genome early region 3 (AdE3) would protect transplanted β-cells from an alloimmune attack. The insulin-producing β-cell line βTC-tet (C3HeB/FeJ-derived) was transduced with lentiviruses encoding the AdE3 proteins gp19K and RIDα/β. The efficiency of lentiviral transduction of βTC-tet cells exceeded 85%. Lentivector expression of gp19K decreased surface class I major histocompatibility complex expression by over 90%, whereas RIDα/β expression inhibited cytokine-induced Fas upregulation by over 75%. βTC-tet cells transduced with gp19K and RIDα/β lentivectors, but not with a control lentivector, provided prolonged correction of hyperglycemia after transplantation into diabetic BALB/c severe combined immunodeficient mice reconstituted with allogeneic immune effector cells or into diabetic allogeneic BALB/c mice. Thus, genetic engineering of β-cells using gp19K- and RIDα/β-expressing lentiviral vectors may provide an alternative that has the potential to eliminate or reduce treatment with the potent immunosuppressive agents necessary at present for prolonged engraftment with transplanted islets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Edge AS . Current applications of cellular xenografts. Transplant Proc 2000; 32: 1169–1171.

    Article  CAS  PubMed  Google Scholar 

  2. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54: 2060–2069.

    Article  CAS  PubMed  Google Scholar 

  3. Balamurugan AN, Bottino R, Giannoukakis N, Smetanka C . Prospective and challenges of islet transplantation for the therapy of autoimmune diabetes. Pancreas 2006; 32: 231–243.

    Article  CAS  PubMed  Google Scholar 

  4. Nir T, Melton DA, Dor Y . Recovery from diabetes in mice by β cell regeneration. J Clin Invest 2007; 117: 2553–2561.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med 2006; 355: 1318–1330.

    Article  CAS  PubMed  Google Scholar 

  6. Horwitz MS . Function of adenovirus E3 proteins and their interactions with immunoregulatory cell proteins. J Gene Med 2004; 6 (Suppl 1): S172–S183.

    Article  CAS  PubMed  Google Scholar 

  7. Benedict CA, Norris PS, Prigozy TI, Bodmer JL, Mahr JA, Garnett CT et al. Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2. J Biol Chem 2001; 276: 3270–3278.

    Article  CAS  PubMed  Google Scholar 

  8. Gooding LR, Ranheim TS, Tollefson AE, Aquino L, Duerksen-Hughes P, Horton TM et al. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J Virol 1991; 65: 4114–4123.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shisler J, Yang C, Walter B, Ware CF, Gooding LR . The adenovirus E3-10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis. J Virol 1997; 71: 8299–8306.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Friedman JM, Horwitz MS . Inhibition of tumor necrosis factor alpha-induced NF-κB activation by the adenovirus E3-10.4/14.5K complex. J Virol 2002; 76: 5515–5521.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Delgado-Lopez F, Horwitz MS . Adenovirus RIDαβ complex inhibits lipopolysaccharide signaling without altering TLR4 cell surface expression. J Virol 2006; 80: 6378–6386.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Burgert HG, Maryanski JL, Kvist S . ‘E3/19K’ protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc Natl Acad Sci USA 1987; 84: 1356–1360.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Beilke J, Johnson Z, Kuhl N, Gill RG . A major role for host MHC class I antigen presentation for promoting islet allograft survival. Transplant Proc 2004; 36: 1173–1174.

    Article  CAS  PubMed  Google Scholar 

  14. Sigrist S, Ebel N, Langlois A, Bosco D, Toso C, Kleiss C et al. Role of chemokine signaling pathways in pancreatic islet rejection during allo- and xenotransplantation. Transplant Proc 2005; 37: 3516–3518.

    Article  CAS  PubMed  Google Scholar 

  15. Eizirik DL, Mandrup-Poulsen T . A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 2001; 44: 2115–2133.

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Santamaria P . Dissecting autoimmune diabetes through genetic manipulation of non-obese diabetic mice. Diabetologia 2003; 46: 1447–1464.

    Article  CAS  PubMed  Google Scholar 

  17. Efrat S, Fejer G, Brownlee M, Horwitz MS . Prolonged survival of pancreatic islet allografts mediated by adenovirus immunoregulatory transgenes. Proc Natl Acad Sci USA 1995; 92: 6947–6951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Efrat S, Serreze D, Svetlanov A, Post CM, Johnson EA, Herold K et al. Adenovirus early region 3 (E3) immunomodulatory genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2001; 50: 980–984.

    Article  CAS  PubMed  Google Scholar 

  19. Pierce MA, Chapman HD, Post CM, Svetlanov A, Efrat S, Horwitz M et al. Adenovirus early region 3 antiapoptotic 10.4K, 14.5K, and 14.7K genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2003; 52: 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  20. von Herrath MG, Efrat S, Oldstone MB, Horwitz MS . Expression of adenoviral E3 transgenes in β cells prevents autoimmune diabetes. Proc Natl Acad Sci USA 1997; 94: 9808–9813.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, Lu X et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006; 103: 17372–17377.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Efrat S, Fusco-DeMane D, Lemberg H, al Emran O, Wang X . Conditional transformation of a pancreatic β-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci USA 1995; 92: 3576–3580.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Fleischer N, Chen C, Surana M, Leiser M, Rossetti L, Pralong W et al. Functional analysis of a conditionally transformed pancreatic β-cell line. Diabetes 1998; 47: 1419–1425.

    Article  CAS  PubMed  Google Scholar 

  24. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 2004; 22: 589–594.

    Article  CAS  PubMed  Google Scholar 

  25. Follenzi A, Naldini L . Generation of HIV-1 derived lentiviral vectors. Methods Enzymol 2002; 346: 454–465.

    Article  CAS  PubMed  Google Scholar 

  26. Petrovsky N, Silva D, Socha L, Slattery R, Charlton B . The role of Fas ligand in beta cell destruction in autoimmune diabetes of NOD mice. Ann N Y Acad Sci 2002; 958: 204–208.

    Article  CAS  PubMed  Google Scholar 

  27. Dupraz P, Rinsch C, Pralong WF, Rolland E, Zufferey R, Trono D et al. Lentivirus-mediated Bcl-2 expression in βTC-tet cells improves resistance to hypoxia and cytokine-induced apoptosis while preserving in vitro and in vivo control of insulin secretion. Gene Therapy 1999; 6: 1160–1169.

    Article  CAS  PubMed  Google Scholar 

  28. Gallichan WS, Kafri T, Krahl T, Verma IM, Sarvetnick N . Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 1998; 9: 2717–2726.

    Article  CAS  PubMed  Google Scholar 

  29. Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C . A20 inhibits cytokine-induced apoptosis and nuclear factor κB-dependent gene activation in islets. J Exp Med 1999; 190: 1135–1146.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Machen J, Bertera S, Chang Y, Bottino R, Balamurugan AN, Robbins PD et al. Prolongation of islet allograft survival following ex vivo transduction with adenovirus encoding a soluble type 1 TNF receptor-Ig fusion decoy. Gene Therapy 2004; 11: 1506–1514.

    Article  CAS  PubMed  Google Scholar 

  31. Papeta N, Chen T, Vianello F, Gererty L, Malik A, Mok YT et al. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent. Transplantation 2007; 83: 174–183.

    Article  CAS  PubMed  Google Scholar 

  32. Rabinovitch A, Suarez-Pinzon W, Strynadka K, Ju Q, Edelstein D, Brownlee M et al. Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects β-cells from cytokine-induced destruction. Diabetes 1999; 48: 1223–1229.

    Article  CAS  PubMed  Google Scholar 

  33. Lunsford KE, Gao D, Eiring AM, Wang Y, Frankel WL, Bumgardner GL . Evidence for tissue-directed immune responses: analysis of CD4- and CD8-dependent alloimmunity. Transplantation 2004; 78: 1125–1133.

    Article  PubMed  Google Scholar 

  34. Elsing A, Burgert HG . The adenovirus E3/10.4K-14.5K proteins down-modulate the apoptosis receptor Fas/Apo-1 by inducing its internalization. Proc Natl Acad Sci USA 1998; 95: 10072–10077.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kobinger GP, Deng S, Louboutin JP, Vatamaniuk M, Matschinsky F, Markmann JF et al. Transduction of human islets with pseudotyped lentiviral vectors. Hum Gene Ther 2004; 15: 211–219.

    Article  CAS  PubMed  Google Scholar 

  36. Keir ME, Francisco LM, Sharpe AH . PD-1 and its ligands in T-cell immunity. Curr Opin Immunol 2007; 19: 309–314.

    Article  CAS  PubMed  Google Scholar 

  37. Ilan Y, Droguett G, Chowdhury NR, Li Y, Sengupta K, Thummala NR et al. Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc Natl Acad Sci USA 1997; 94: 2587–2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ravelingien A . Xenotransplantation: the ethical and legal concerns. Xenotransplantation 2007; 14: 653–654.

    Article  Google Scholar 

  39. Efrat S . Beta-cell replacement for insulin-dependent diabetes mellitus. Adv Drug Deliv Rev 2008; 60: 114–123.

    Article  CAS  PubMed  Google Scholar 

  40. Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E et al. Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA 2005; 102: 7964–7969.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zalzman M, Gupta S, Giri RK, Berkovich I, Sappal BS, Karnieli O et al. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA 2003; 100: 7253–7258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Joseph A, Zheng JH, Follenzi A, Dilorenzo T, Sango K, Hyman J et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol 2008; 82: 3078–3089.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. D’Ambra R, Surana M, Efrat S, Starr RG, Fleischer N . Regulation of insulin secretion from β-cell lines derived from transgenic mice insulinomas resembles that of normal β cells. Endocrinology 1990; 126: 2815–2822.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases P01DK52956 and P60DK20541 and National Institute of Allergy and Infectious Diseases AI67136 and the Einstein/MMC Center for AIDS Research AI51519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Goldstein.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojaoghlanian, T., Joseph, A., Follenzi, A. et al. Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic β-cells to correct diabetes in allogeneic mice. Gene Ther 16, 340–348 (2009). https://doi.org/10.1038/gt.2008.172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.172

Keywords

This article is cited by

Search

Quick links