Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections

Abstract

Inflammasomes are multi-protein complexes integrating pathogen-triggered signaling leading to the generation of pro-inflammatory cytokines including interleukin-18 (IL-18). Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections are associated with elevated IL-18, suggesting inflammasome activation. However, there is marked person-to-person variation in the inflammasome response to HCV and HIV. We hypothesized that host genetics may explain this variation. To test this, we analyzed the associations of plasma IL-18 levels and polymorphisms in 10 genes in the inflammasome cascade. About 1538 participants with active HIV and/or HCV infection in three ancestry groups are included. Samples were genotyped using the Illumina Omni 1-quad and Omni 2.5 arrays. Linear regression analyses were performed to test the association of variants with log IL-18 including HCV and HIV infection status, and HIV RNA in each ancestry group and then meta-analyzed. Eleven highly correlated single-nucleotide polymorphisms (r2=0.98–1) in the IL-18-BCO2 region were significantly associated with log IL-18; each T allele of rs80011693 confers a decrease of 0.06 log pg ml−1 of IL-18 after adjusting for covariates (rs80011693; rs111311302 β=−0.06, P-value=2.7 × 10−4). In conclusion, genetic variation in IL-18 is associated with IL-18 production in response to HIV and HCV infection, and may explain variability in the inflammatory outcomes of chronic viral infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Guo H, Callaway JB, Ting JP . Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015; 21: 677–687.

    Article  Google Scholar 

  2. Chattergoon MA, Latanich R, Quinn J, Winter ME, Buckheit RW 3rd, Blankson JN et al. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal toll-like receptors without induction of type 1 interferon. PLoS Pathog 2014; 10: e1004082.

    Article  Google Scholar 

  3. Kanneganti TD . Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 2010; 10: 688–698.

    Article  CAS  Google Scholar 

  4. Netea MG, Simon A, van de Veerdonk F, Kullberg BJ, Van der Meer JW, Joosten LA . IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog 2010; 6: e1000661.

    Article  Google Scholar 

  5. Dinarello CA . Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011; 117: 3720–3732.

    Article  CAS  Google Scholar 

  6. Strowig T, Henao-Mejia J, Elinav E, Flavell R . Inflammasomes in health and disease. Nature 2012; 481: 278–286.

    Article  CAS  Google Scholar 

  7. Chattergoon MA, Levine JS, Latanich R, Osburn WO, Thomas DL, Cox AL . High plasma interleukin-18 levels mark the acute phase of hepatitis C virus infection. J Infect Dis 2011; 204: 1730–1740.

    Article  CAS  Google Scholar 

  8. Sharma A, Chakraborti A, Das A, Dhiman RK, Chawla Y . Elevation of interleukin-18 in chronic hepatitis C: implications for hepatitis C virus pathogenesis. Immunology 2009; 128 (1 Suppl): e514–e522.

    Article  Google Scholar 

  9. Jia H, Du J, Zhu S, Ma Y, Cai H . Clinical observation of serum IL-18, IL-10 and sIL-2R levels in patients with chronic hepatitis C pre- and post antiviral treatment. Chin Med J 2003; 116: 605–608.

    CAS  PubMed  Google Scholar 

  10. Iannello A, Boulassel MR, Samarani S, Tremblay C, Toma E, Routy JP et al. HIV-1 causes an imbalance in the production of interleukin-18 and its natural antagonist in HIV-infected individuals: implications for enhanced viral replication. J Infect Dis 2010; 201: 608–617.

    Article  CAS  Google Scholar 

  11. Samarani S, Allam O, Sagala P, Aldabah Z, Jenabian MA, Mehraj V et al. Imbalanced production of IL-18 and its antagonist in human diseases, and its implications for HIV-1 infection. Cytokine 2016; 82: 38–51.

    Article  CAS  Google Scholar 

  12. Matteini AM, Li J, Lange EM, Tanaka T, Lange LA, Tracy RP et al. Novel gene variants predict serum levels of the cytokines IL-18 and IL-1ra in older adults. Cytokine 2014; 65: 10–16.

    Article  CAS  Google Scholar 

  13. Melzer D, Perry JR, Hernandez D, Corsi AM, Stevens K, Rafferty I et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet 2008; 4: e1000072.

    Article  Google Scholar 

  14. He M, Cornelis MC, Kraft P, van Dam RM, Sun Q, Laurie CC et al. Genome-wide association study identifies variants at the IL18-BCO2 locus associated with interleukin-18 levels. Arterioscler Thromb Vasc Biol 2010; 30: 885–890.

    Article  CAS  Google Scholar 

  15. Thompson SR, McCaskie PA, Beilby JP, Hung J, Jennens M, Chapman C et al. IL18 haplotypes are associated with serum IL-18 concentrations in a population-based study and a cohort of individuals with premature coronary heart disease. Clin Chem 2007; 53: 2078–2085.

    Article  CAS  Google Scholar 

  16. Niu ZL, Zhang PA, Tong YQ . Association of plasma interleukin-18 levels and polymorphisms in interleukin-18 gene with outcomes of hepatitis C virus infections: a meta-analysis. J Immunoassay Immunochem 2015; 36: 221–232.

    Article  CAS  Google Scholar 

  17. Bouzgarrou N, Hassen E, Schvoerer E, Stoll-Keller F, Bahri O, Gabbouj S et al. Association of interleukin-18 polymorphisms and plasma level with the outcome of chronic HCV infection. J Med Virol 2008; 80: 607–614.

    Article  CAS  Google Scholar 

  18. Frayling TM, Rafiq S, Murray A, Hurst AJ, Weedon MN, Henley W et al. An interleukin-18 polymorphism is associated with reduced serum concentrations and better physical functioning in older people. J Gerontol A Biol Sci Med Sci 2007; 62: 73–78.

    Article  Google Scholar 

  19. Tiret L, Godefroy T, Lubos E, Nicaud V, Tregouet DA, Barbaux S et al. Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation 2005; 112: 643–650.

    Article  CAS  Google Scholar 

  20. Xia K, Shabalin AA, Huang S, Madar V, Zhou YH, Wang W et al. seeQTL: a searchable database for human eQTLs. Bioinformatics 2012; 28: 451–452.

    Article  CAS  Google Scholar 

  21. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA et al. A novel approach to high-quality postmortem tissue procurement: the GTEx Project. Biopreserv Biobank 2015; 13: 311–319.

    Article  Google Scholar 

  22. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R et al. Genetics and beyond–the transcriptome of human monocytes and disease susceptibility. PLoS One 2010; 5: e10693.

    Article  Google Scholar 

  23. Wawrocki S, Druszczynska M, Kowalewicz-Kulbat M, Rudnicka W . Interleukin 18 (IL-18) as a target for immune intervention. Acta Biochim Pol 2016; 63: 59–63.

    Article  CAS  Google Scholar 

  24. Puren AJ, Fantuzzi G, Dinarello CA . Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA 1999; 96: 2256–2261.

    Article  CAS  Google Scholar 

  25. Tone M, Thompson SA, Tone Y, Fairchild PJ, Waldmann H . Regulation of IL-18 (IFN-gamma-inducing factor) gene expression. J Immunol 1997; 159: 6156–6163.

    CAS  PubMed  Google Scholar 

  26. Lamkanfi M, Dixit VM . Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 2012; 28: 137–161.

    Article  CAS  Google Scholar 

  27. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G . The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10: 241–247.

    Article  CAS  Google Scholar 

  28. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 1997; 275: 206–209.

    Article  CAS  Google Scholar 

  29. Vlahov D, Munoz A, Anthony JC, Cohn S, Celentano DD, Nelson KE . Association of drug injection patterns with antibody to human immunodeficiency virus type 1 among intravenous drug users in Baltimore, Maryland. Am J Epidemiol 1990; 132: 847–856.

    Article  CAS  Google Scholar 

  30. Cox AL, Netski DM, Mosbruger T, Sherman SG, Strathdee S, Ompad D et al. Prospective evaluation of community-acquired acute-phase hepatitis C virus infection. Clin Infect Dis 2005; 40: 951–958.

    Article  Google Scholar 

  31. Kim AY, Kuntzen T, Timm J, Nolan BE, Baca MA, Reyor LL et al. Spontaneous control of HCV is associated with expression of HLA-B 57 and preservation of targeted epitopes. Gastroenterology 2011; 140: 686–696.e1.

    Article  CAS  Google Scholar 

  32. Tobler LH, Bahrami SH, Kaidarova Z, Pitina L, Winkelman VK, Vanderpool SK et al. A case-control study of factors associated with resolution of hepatitis C viremia in former blood donors (CME). Transfusion 2010; 50: 1513–1523.

    Article  CAS  Google Scholar 

  33. Kuniholm MH, Gao X, Xue X, Kovacs A, Marti D, Thio CL et al. The relation of HLA genotype to hepatitis C viral load and markers of liver fibrosis in HIV-infected and HIV-uninfected women. J Infect Dis 2011; 203: 1807–1814.

    Article  CAS  Google Scholar 

  34. Duggal P, Thio CL, Wojcik GL, Goedert JJ, Mangia A, Latanich R et al. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: data from multiple cohorts. Ann Intern Med 2013; 158: 235–245.

    Article  Google Scholar 

  35. Patterson N, Price AL, Reich D . Population structure and eigen analysis. PLoS Genet 2006; 2: e190.

    Article  Google Scholar 

  36. Howie BN, Donnelly P, Marchini J . A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009; 5: e1000529.

    Article  Google Scholar 

  37. 1000 Genomes Project Consortium 1000 Genomes Project Consortium Auton A, 1000 Genomes Project Consortium Brooks LD, 1000 Genomes Project Consortium Durbin RM, 1000 Genomes Project Consortium Garrison EP, 1000 Genomes Project Consortium Kang HM et al. A global reference for human genetic variation. Nature 2015; 526: 68–74.

    Article  Google Scholar 

  38. Roshyara NR, Scholz M . fcGENE: a versatile tool for processing and transforming SNP datasets. PLoS One 2014; 9: e97589.

    Article  Google Scholar 

  39. Normand SL . Meta-analysis: formulating, evaluating, combining, and reporting. Stat Med 1999; 18: 321–359.

    Article  CAS  Google Scholar 

  40. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 2010; 42: 436–440.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Institutes of Health (NIH), National Institute on Drug Abuse R01DA013324 (Thomas), R01DA12568 (Mehta) and U01DA036297 (Kirk); National Institute of Allergy and Infectious Diseases (NIAID) R01 AI108403 (Cox); NIH K23 AI124913 (Lahiri); NIH U19AI066345, U01AI131314, R01DA033541 and U19AI082630 (Kim). Data in this manuscript were partially collected by the Women’s Interagency HIV Study (WIHS). WIHS (Principal Investigators): UAB-MS WIHS (Saag, Kempf and Konkle-Parker), U01-AI-103401; Atlanta WIHS (Ofotokun and Wingood), U01-AI-103408; Bronx WIHS (Anastos), U01-AI-035004; Brooklyn WIHS (Minkoff and Gustafson), U01-AI-031834; Chicago WIHS (Cohen and French), U01-AI-034993; Metropolitan Washington WIHS (Kassaye), U01-AI-034994; Miami WIHS (Fischl and Metsch), U01-AI-103397; UNC WIHS (Adimora), U01-AI-103390; Connie Wofsy Women’s HIV Study, Northern California (Greenblatt, Aouizerat and Tien), U01-AI-034989; WIHS Data Management and Analysis Center (Gange and Golub), U01-AI-042590; Southern California WIHS (Milam), U01-HD-032632 (WIHS I–WIHS IV). The WIHS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the National Cancer Institute (NCI), the National Institute on Drug Abuse (NIDA) and the National Institute on Mental Health (NIMH). Targeted supplemental funding for specific projects is also provided by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute on Alcohol Abuse and Alcoholism (NIAAA), the National Institute on Deafness and other Communication Disorders (NIDCD) and the NIH Office of Research on Women’s Health. WIHS data collection is also supported by UL1-TR000004 (UCSF CTSA) and UL1-TR000454 (Atlanta CTSA).

Disclaimer

The contents of this publication are solely the responsibility of the authors and do not represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Duggal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergara, C., Thio, C., Latanich, R. et al. Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections. Genes Immun 18, 82–87 (2017). https://doi.org/10.1038/gene.2017.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2017.2

Search

Quick links