Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity

Abstract

Following the initial diversity generated by V(D)J recombination, somatic hypermutation is the principal mechanism for producing further antibody repertoire diversity in antigen-experienced B cells. While somatic hypermutation typically results in single-nucleotide substitutions, the infrequent incorporation of genetic insertions and deletions has also been associated with the somatic hypermutation process. We used high-throughput antibody sequencing to determine the sequence of thousands of antibody genes containing somatic hypermutation-associated insertions and deletions (SHA indels), which revealed significant differences between the location of SHA indels and somatic mutations. Further, we identified a cluster of insertions and deletions in the antibody framework 3 region, which corresponds to the hypervariable region 4 (HV4) in T-cell receptors. We propose that this HV4-like region, identified by SHA indel analysis, represents a region of under-appreciated affinity maturation potential. Finally, through the analysis of both location and length distribution of SHA indels, we have determined regions of structural plasticity within the antibody protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tonegawa S . Somatic generation of antibody diversity. Nature 1983; 302: 575–581.

    CAS  PubMed  Google Scholar 

  2. Jackson SM, Wilson PC, James JA, Capra JD . Human B cell subsets. Adv Immunol 2008; 98: 151–224.

    Article  CAS  PubMed  Google Scholar 

  3. Neuberger MS . Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 2008; 86: 124–132.

    Article  CAS  PubMed  Google Scholar 

  4. Schroeder HW, Cavacini L . Structure and function of immunoglobulins. J Allergy Clin Immunol 2010; 125 (Suppl 2): S41–52.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wilson PC, de Bouteiller O, Liu Y, Potter K, Banchereau J, Capra JD et al. Somatic hypermutation introduces insertions and deletions into immunoglobulin genes. J Exp Med 1998; 187: 59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goossens T, Klein U, Küppers R . Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci USA 1998; 95: 2463–2468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bemark M, Neuberger MS . By-products of immunoglobulin somatic hypermutation. Genes Chromosomes Cancer 2003; 38: 32–39.

    Article  CAS  PubMed  Google Scholar 

  8. Küppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R et al. Hodgkin disease: Hodgkin and Reed–Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci USA 1994; 91: 10962–10966.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Klein U, Klein G, Ehlin-Henriksson B, Rajewsky K, Küppers R . Burkitt's lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes. Mol Med 1995; 1: 495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kobrin C, Bendandi M, Kwak L . Novel secondary Ig VH gene rearrangement and in-frame Ig heavy chain complementarity-determining region III insertion/deletion variants in de novo follicular lymphoma. J Immunol 2001; 166: 2235–2243.

    Article  CAS  PubMed  Google Scholar 

  11. Miura Y, Chu CC, Dines DM, Asnis SE, Furie RA, Chiorazzi N . Diversification of the Ig variable region gene repertoire of synovial B lymphocytes by nucleotide insertion and deletion. Mol Med 2003; 9: 166–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belessi CJ, Davi FB, Stamatopoulos KE, Degano M, Andreou TM, Moreno C et al. IGHV gene insertions and deletions in chronic lymphocytic leukemia: ‘CLL-biased’ deletions in a subset of cases with stereotyped receptors. Eur J Immunol 2006; 36: 1963–1974.

    Article  CAS  PubMed  Google Scholar 

  13. Wilson PC, Liu Y, Banchereau J, Capra JD, Pascual V . Amino acid insertions and deletions contribute to diversify the human Ig repertoire. Immunol Rev 1998; 162: 143–151.

    Article  CAS  PubMed  Google Scholar 

  14. de Wildt RM, Hoet RM, van Venrooij WJ, Tomlinson IM, Winter G . Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire. J Mol Biol 1999; 285: 895–901.

    Article  CAS  PubMed  Google Scholar 

  15. Reason DC, Zhou J . Codon insertion and deletion functions as a somatic diversification mechanism in human antibody repertoires. Biol Direct 2006; 1: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou J, Lottenbach KR, Barenkamp SJ, Reason DC . Somatic hypermutation and diverse immunoglobulin gene usage in the human antibody response to the capsular polysaccharide of Streptococcus pneumoniae Type 6B. Infect Immun 2004; 72: 3505–3514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krause JC, Ekiert DC, Tumpey TM, Smith PB, Wilson IA, Crowe JE . An insertion mutation that distorts antibody binding site architecture enhances function of a human antibody. MBio 2011; 2: e00345–10.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu X, Yang Z-Y, Li Y, Hogerkorp C-M, Schief WR, Seaman MS et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010; 329: 856–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walker LM, Phogat SK, Chan-Hui P-Y, Wagner D, Phung P, Goss JL et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009; 326: 285–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien J-P et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011; 477: 466–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P-S, Wang S-K et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 2011; 334: 1097–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou T, Georgiev I, Wu X, Yang Z-Y, Dai K, Finzi A et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 2010; 329: 811–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Azoitei ML, Correia BE, Ban Y-EA, Carrico C, Kalyuzhniy O, Chen L et al. Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 2011; 334: 373–376.

    Article  CAS  PubMed  Google Scholar 

  24. Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt RT et al. Elicitation of structure-specific antibodies by epitope scaffolds. Proc Natl Acad Sci USA 2010; 107: 17880–17887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Correia BE, Ban Y-EA, Holmes MA, Xu H, Ellingson K, Kraft Z et al. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 2010; 18: 1116–1126.

    Article  CAS  PubMed  Google Scholar 

  26. Diskin R, Scheid JF, Marcovecchio PM, West AP, Klein F, Gao H et al. Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 2011; 334: 1289–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ekiert DC, Bhabha G, Elsliger M-A, Friesen RHE, Jongeneelen M, Throsby M et al. Antibody recognition of a highly conserved influenza virus epitope. Science 2009; 324: 246–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Diskin R, Marcovecchio PM, Bjorkman PJ . Structure of a clade C HIV-1 gp120 bound to CD4 and CD4-induced antibody reveals anti-CD4 polyreactivity. Nat Struct Mol Biol 2010; 17: 608–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Potter KN, Li Y, Capra JD . Staphylococcal protein A simultaneously interacts with framework region 1, complementarity-determining region 2, and framework region 3 on human VH3-encoded Igs. J Immunol 1996; 157: 2982–2988.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH U01 AI 78407 and NIAID Contract HHSN272200900047C, and supported in part by the Vanderbilt CTSA Grant UL1 RR024975-01 from NCRR/NIH. BSB was supported by NIH T32 HL069765, and JRW by NIH T32 AI060571. We thank all patients for participating in the study. We also thank Chris L Wright and Alvaro G Hernandez at the WM Keck Center for Comparative and Functional Genomics at the University of Illinois at Urbana-Champaign for performing the 454 sequencing. We are grateful to the IMGT team for its helpful collaboration and the analysis of nucleotide sequences on the IMGT/HighV-QUEST web portal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Crowe Jr.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briney, B., Willis, J. & Crowe, J. Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity. Genes Immun 13, 523–529 (2012). https://doi.org/10.1038/gene.2012.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.28

Keywords

This article is cited by

Search

Quick links