Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

From model cell line to in vivo gene expression: disease-related intestinal gene expression in IBD

Abstract

Crohn's disease (CD) and ulcerative colitis (UC) are subforms of inflammatory bowel diseases (IBD). Genetic and environmental factors influencing the onset and course of the diseases have been recently identified. This study uses a two-step approach to detect genes involved in the pathogenesis of IBD by microarray analysis and real-time PCR (RT-PCR). In a first step, microarray expression screening was used to obtain tumour necrosis factor-α (TNF-α) induction profiles of two human cell lines to represent the tissue cell types involved in IBD. In a second step, a subset of differentially expressed genes was examined by real-time PCR in intestinal biopsy samples of normal controls (NC) compared with UC and CD patients, as well as to a cohort of patients suffering from intestinal diseases other than IBD. Data were obtained from 88 CD, 88 UC, 53 non-IBD patients (inflammatory control), DC and 45 NC individuals. The experimental design enabled the identification of disease-specific expressed genes. DnaJ (Hsp40) homologue, subfamily B, member 5 (DNAJB5) was downregulated in intestinal biopsy samples of the UC cohort compared with NC. A difference in JUNB expression levels was observed by comparing biopsy samples from inflamed and non-inflamed areas of UC patients. Transcript expression differences between IBD and control cohorts were found by examining histamine N-methyltransferase (HNMT), interleukin-1A (IL-1A) and proplatelet basic protein (PPBP) expression. The experimental procedure represents an approach to identify disease-relevant genes, which is applicable to any disease where appropriate model systems are available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Thompson NP, Driscoll R, Pounder RE, Wakefield AJ . Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ 1996; 312: 95–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Halfvarson J, Bodin L, Tysk C, Lindberg E, Jarnerot G . Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology 2003; 124: 1767–1773.

    PubMed  Google Scholar 

  3. Hugot JP, Laurent-Puig P, Gower-Rousseau C, Olson JM, Lee JC, Beaugerie L et al. Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature 1996; 379: 821–823.

    CAS  PubMed  Google Scholar 

  4. Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B, Koch WA et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet 2004; 36: 476–480.

    CAS  PubMed  Google Scholar 

  5. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004; 36: 471–475.

    CAS  PubMed  Google Scholar 

  6. Potocnik U, Ferkolj I, Glavac D, Dean M . Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis. Genes Immun 2004; 5: 530–539.

    CAS  PubMed  Google Scholar 

  7. Brant SR, Panhuysen CI, Nicolae D, Reddy DM, Bonen DK, Karaliukas R et al. MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet 2003; 73: 1282–1292.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Duerr RH, Barmada MM, Zhang L, Pfutzer R, Weeks DE . High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11-12. Am J Hum Genet 2000; 66: 1857–1862.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Curran ME, Lau KF, Hampe J, Schreiber S, Bridger S, Macpherson AJ et al. Genetic analysis of inflammatory bowel disease in a large European cohort supports linkage to chromosomes 12 and 16. Gastroenterology 1998; 115: 1066–1071.

    CAS  PubMed  Google Scholar 

  10. Hampe J, Frenzel H, Mirza MM, Croucher PJ, Cuthbert A, Mascheretti S et al. Evidence for a NOD2-independent susceptibility locus for inflammatory bowel disease on chromosome 16p. Proc Natl Acad Sci USA 2002; 99: 321–326.

    CAS  PubMed  Google Scholar 

  11. Karlinger K, Gyorke T, Mako E, Mester A, Tarjan Z . The epidemiology and the pathogenesis of inflammatory bowel disease. Eur J Radiol 2000; 35: 154–167.

    CAS  PubMed  Google Scholar 

  12. Schwerbrock N, Makkink M, van der Sluis M, Buller H, Einerhand A, Sartor R et al. Interleukin 10-deficient mice exhibit defective colonic Muc2 synthesis before and after induction of colitis by commensal bacteria. Inflamm Bowel Dis 2004; 10: 811–823.

    PubMed  Google Scholar 

  13. MacDermott RP . Alterations of the mucosal immune system in inflammatory bowel disease. J Gastroenterol 1996; 31: 907–916.

    CAS  PubMed  Google Scholar 

  14. Autschbach F, Braunstein J, Helmke B, Zuna I, Schurmann G, Niemir ZI et al. In situ expression of interleukin-10 in noninflamed human gut and in inflammatory bowel disease. Am J Pathol 1998; 153: 121–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. van Deventer SJ . Review article: targeting TNF alpha as a key cytokine in the inflammatory processes of Crohn's disease--the mechanisms of action of infliximab. Aliment Pharmacol Ther 1999; 13: 3–8.

    CAS  PubMed  Google Scholar 

  16. Kollias G, Douni E, Kassiotis G, Kontoyiannis D . On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol Rev 1999; 169: 175–194.

    CAS  PubMed  Google Scholar 

  17. Cohen RD . Efficacy and safety of repeated infliximab infusions for Crohn's disease: 1-year clinical experience. Inflamm Bowel Dis 2001; 7 (Suppl 1): S17–S22.

    PubMed  Google Scholar 

  18. Farrell RJ, Shah SA, Lodhavia PJ, Alsahli M, Falchuk KR, Michetti P et al. Clinical experience with infliximab therapy in 100 patients with Crohn's disease. Am J Gastroenterol 2000; 95: 3490–3497.

    CAS  PubMed  Google Scholar 

  19. Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet 2002; 359: 1541–1549.

    CAS  PubMed  Google Scholar 

  20. Vermeire S, Louis E, Carbonez A, Van Assche G, Noman M, Belaiche J et al. Demographic and clinical parameters influencing the short-term outcome of anti-tumor necrosis factor (infliximab) treatment in Crohn's disease. Am J Gastroenterol 2002; 97: 2357–2363.

    CAS  PubMed  Google Scholar 

  21. Ljung T, Karlen P, Schmidt D, Hellstrom PM, Lapidus A, Janczewska I et al. Infliximab in inflammatory bowel disease: clinical outcome in a population based cohort from Stockholm County. Gut 2004; 53: 849–853.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, McLeod RS, Griffiths AM et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000; 66: 1863–1870.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–228.

    CAS  PubMed  Google Scholar 

  24. Piguet PF, Vesin C, Donati Y, Barazzone C . TNF-induced enterocyte apoptosis and detachment in mice: induction of caspases and prevention by a caspase inhibitor, ZVAD-fmk. Lab Invest 1999; 79: 495–500.

    CAS  PubMed  Google Scholar 

  25. Mizoguchi E, Mizoguchi A, Takedatsu H, Cario E, de Jong YP, Ooi CJ et al. Role of tumor necrosis factor receptor 2 (TNFR2) in colonic epithelial hyperplasia and chronic intestinal inflammation in mice. Gastroenterology 2002; 122: 134–144.

    CAS  PubMed  Google Scholar 

  26. Fukushima K, Yonezawa H, Fiocchi C . Inflammatory bowel disease-associated gene expression in intestinal epithelial cells by differential cDNA screening and mRNA display. Inflamm Bowel Dis 2003; 9: 290–301.

    PubMed  Google Scholar 

  27. Berrebi D, Maudinas R, Hugot JP, Chamaillard M, Chareyre F, De Lagausie P et al. Card15 gene overexpression in mononuclear and epithelial cells of the inflamed Crohn's disease colon. Gut 2003; 52: 840–846.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Garat C, Arend WP . Intracellular IL-1Ra type 1 inhibits IL-1-induced IL-6 and IL-8 production in Caco-2 intestinal epithelial cells through inhibition of p38 mitogen-activated protein kinase and NF-kappaB pathways. Cytokine 2003; 23: 31–40.

    CAS  PubMed  Google Scholar 

  29. Dooley TP, Curto EV, Reddy SP, Davis RL, Lambert GW, Wilborn TW et al. Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: screening by DNA microarrays. Inflamm Bowel Dis 2004; 10: 1–14.

    PubMed  Google Scholar 

  30. He X, Sugawara M, Takekuma Y, Miyazaki K . Absorption of ester prodrugs in CaCo-2 and rat intestine models. Antimicrob Agents Chemother 2004; 48: 2604–2609.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Watanabe Y, Jacob CO . Regulation of MHC class II antigen expression. Opposing effects of tumor necrosis factor-alpha on IFN-gamma-induced HLA-DR and Ia expression depends on the maturation and differentiation stage of the cell. J Immunol 1991; 146: 899–905.

    CAS  PubMed  Google Scholar 

  32. Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S . p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol 2002; 168: 5342–5351.

    CAS  PubMed  Google Scholar 

  33. Ludwiczek O, Vannier E, Borggraefe I, Kaser A, Siegmund B, Dinarello C et al. Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel disease. Clin Exp Immunol 2004; 138: 323–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Andus T, Daig R, Vogl D, Aschenbrenner E, Lock G, Hollerbach S et al. Imbalance of the interleukin 1 system in colonic mucosa--association with intestinal inflammation and interleukin 1 receptor antagonist [corrected] genotype 2. Gut 1997; 41: 651–657.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Arai Y, Takanashi H, Kitagawa H, Okayasu I . Involvement of interleukin-1 in the development of ulcerative colitis induced by dextran sulfate sodium in mice. Cytokine 1998; 10: 890–896.

    CAS  PubMed  Google Scholar 

  36. Nikolaus S, Bauditz J, Gionchetti P, Witt C, Lochs H, Schreiber S . Increased secretion of pro-inflammatory cytokines by circulating polymorphonuclear neutrophils and regulation by interleukin 10 during intestinal inflammation. Gut 1998; 42: 470–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Camoglio L, Te Velde AA, Tigges AJ, Das PK, Van Deventer SJ . Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis 1998; 4: 285–290.

    CAS  PubMed  Google Scholar 

  38. Jarry A, Vallette G, Cassagnau E, Moreau A, Bou-Hanna C, Lemarre P et al. Interleukin 1 and interleukin 1beta converting enzyme (caspase 1) expression in the human colonic epithelial barrier. Caspase 1 downregulation in colon cancer. Gut 1999; 45: 246–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lahav M, Levite M, Bassani L, Lang A, Fidder H, Tal R et al. Lidocaine inhibits secretion of IL-8 and IL-1beta and stimulates secretion of IL-1 receptor antagonist by epithelial cells. Clin Exp Immunol 2002; 127: 226–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Madrigal-Estebas L, Doherty DG, O'Donoghue DP, Feighery C, O'Farrelly C . Differential expression and upregulation of interleukin-1alpha, interleukin-1beta and interleukin-6 by freshly isolated human small intestinal epithelial cells. Mediators Inflamm 2002; 11: 313–319.

    PubMed  PubMed Central  Google Scholar 

  41. Matikainen S, Tapiovaara H, Vaheri A, Hurme M . Activation of interleukin-1 beta gene expression during retinoic acid-induced granulocytic differentiation of promyeloid leukemia cells. Cell Growth Differ 1994; 5: 975–982.

    CAS  PubMed  Google Scholar 

  42. Shanker G, Sorci-Thomas M, Register TC, Adams MR . The inducible expression of THP-1 cell interleukin-1 mRNA: effects of estrogen on differential response to phorbol ester and lipopolysaccharide. Lymphokine Cytokine Res 1994; 13: 1–7.

    CAS  PubMed  Google Scholar 

  43. MacNaul KL, Hutchinson NI, Parsons JN, Bayne EK, Tocci MJ . Analysis of IL-1 and TNF-alpha gene expression in human rheumatoid synoviocytes and normal monocytes by in situ hybridization. J Immunol 1990; 145: 4154–4166.

    CAS  PubMed  Google Scholar 

  44. de Caestecker MP, Telfer BA, Hutchinson IV, Ballardie FW . The detection of intracytoplasmic interleukin-1 alpha, interleukin-1 beta and tumour necrosis factor alpha expression in human monocytes using two colour immunofluorescence flow cytometry. J Immunol Methods 1992; 154: 11–20.

    CAS  PubMed  Google Scholar 

  45. Bailly S, Ferrua B, Fay M, Gougerot-Pocidalo MA . Differential regulation of IL 6, IL 1 A, IL 1 beta and TNF alpha production in LPS-stimulated human monocytes: role of cyclic AMP. Cytokine 1990; 2: 205–210.

    CAS  PubMed  Google Scholar 

  46. Gaffney EV, Stoner CR, Lingenfelter SE, Wagner LA . Demonstration of IL-1 alpha, and IL-1 beta secretion by the monocytic leukemia cell line, THP-1. J Immunol Methods 1989; 122: 211–218.

    CAS  PubMed  Google Scholar 

  47. McAlindon ME, Hawkey CJ, Mahida YR . Expression of interleukin 1 beta and interleukin 1 beta converting enzyme by intestinal macrophages in health and inflammatory bowel disease. Gut 1998; 42: 214–219.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stokkers PC, van Aken BE, Basoski N, Reitsma PH, Tytgat GN, van Deventer SJ . Five genetic markers in the interleukin 1 family in relation to inflammatory bowel disease. Gut 1998; 43: 33–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Reimund JM, Wittersheim C, Dumont S, Muller CD, Baumann R, Poindron P et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn's disease. J Clin Immunol 1996; 16: 144–150.

    CAS  PubMed  Google Scholar 

  50. ÓDonovan N, Galvin M, Morgan J . Physical mapping of the CXC chemokine locus on human chromosome 4. Cytogenet Cell Genet 1999; 84: 39–42.

    Google Scholar 

  51. Ina K, Kusugami K, Yamaguchi T, Imada A, Hosokawa T, Ohsuga M et al. Mucosal interleukin-8 is involved in neutrophil migration and binding to extracellular matrix in inflammatory bowel disease. Am J Gastroenterol 1997; 92: 1342–1346.

    CAS  PubMed  Google Scholar 

  52. McCormack G, Moriarty D, ÓDonoghue D, McCormick P, Sheahan K, Baird A . Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm Res 2001; 50: 491–495.

    CAS  PubMed  Google Scholar 

  53. Mazzucchelli L, Hauser C, Zgraggen K, Wagner H, Hess M, Laissue JA et al. Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation. Am J Pathol 1994; 144: 997–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nielsen O, Rüdiger N, Gaustadnes M, Horn T . Intestinal interleukin-8 concentration and gene expression in inflammtory bowel disease. Scand J Gastroenterol 1997; 32: 1028–1034.

    CAS  PubMed  Google Scholar 

  55. Schenk BI, Petersen F, Flad HD, Brandt E . Platelet-derived chemokines CXC chemokine ligand (CXCL)7, connective tissue-activating peptide III, and CXCL4 differentially affect and cross-regulate neutrophil adhesion and transendothelial migration. J Immunol 2002; 169: 2602–2610.

    CAS  PubMed  Google Scholar 

  56. Schaffner A, King CC, Schaer D, Guiney DG . Induction and antimicrobial activity of platelet basic protein derivatives in human monocytes. J Leukoc Biol 2004; 76: 1010–1018.

    CAS  PubMed  Google Scholar 

  57. Ivanov AI, Nusrat A, Parkos CA . The epithelium in inflammatory bowel disease: potential role of endocytosis of junctional proteins in barrier disruption. Novartis Found Symp 2004; 263: 115–124; discussion 124–32, 211–8.

    CAS  PubMed  Google Scholar 

  58. Gassler N, Rohr C, Schneider A, Kartenbeck J, Bach A, Obermuller N et al. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol 2001; 281: G216–G228.

    CAS  PubMed  Google Scholar 

  59. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 2004; 286: G367–G376.

    CAS  PubMed  Google Scholar 

  60. Flanagan LA, Chou J, Falet H, Neujahr R, Hartwig JH, Stossel TP . Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. J Cell Biol 2001; 155: 511–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP et al. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 2002; 4: 681–690.

    CAS  PubMed  Google Scholar 

  62. Castellazzi M, Spyrou G, La Vista N, Dangy JP, Piu F, Yaniv M et al. Overexpression of c-jun, junB, or junD affects cell growth differently. Proc Natl Acad Sci USA 1991; 88: 8890–8894.

    CAS  PubMed  Google Scholar 

  63. Jess T, Loftus Jr EV, Velayos FS, Harmsen WS, Zinsmeister AR, Smyrk TC et al. Risk of intestinal cancer in inflammatory bowel disease: a population-based study from olmsted county, Minnesota. Gastroenterology 2006; 130: 1039–1046.

    PubMed  Google Scholar 

  64. Hayashi A, Seki N, Hattori A, Kozuma S, Saito T . PKCnu, a new member of the protein kinase C family, composes a fourth subfamily with PKCmu. Biochim Biophys Acta 1999; 1450: 99–106.

    CAS  PubMed  Google Scholar 

  65. Knutson L, Ahrenstedt O, Odlind B, Hallgren R . The jejunal secretion of histamine is increased in active Crohn's disease. Gastroenterology 1990; 98: 849–854.

    CAS  PubMed  Google Scholar 

  66. Raithel M, Matek M, Baenkler H, Jorde W, Hahn E . Mucosal histamine content and histamine secretion in Crohn's disease, ulcerative colitis and allergic enteropathy. Int Arch Allergy Immunol 1995; 108: 127–133.

    CAS  PubMed  Google Scholar 

  67. Garcia-Martin E, Mendoza J, Martinez C, Taxonera C, Urcelay E, Ladero J et al. Severity of ulcerative colitis is associated with a polymorphism at diamine oxidase gene but not at histamine N-methyltransferase gene. World J Gastroenterol 2006; 12: 615–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen M, Roti J, Laszlo A . Hsc40, a new member of the hsp40 family, exhibits similar expression profile to that of hsc70 in mammalian cells. Gene 1999; 238: 333–341.

    CAS  PubMed  Google Scholar 

  69. Ohtsuka K, Hata M . Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 2000; 5: 98–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sato S, Oka M, Noguchi Y, Soda H, Tsurutani J, Nakamura Y et al. Autoimmunity to heat shock protein 40 in ulcerative colitis. J Int Med Res 2004; 32: 141–148.

    CAS  PubMed  Google Scholar 

  71. Ohkawara T, Nishihira J, Ishiguro Y, Otsubo E, Nagai K, Takeda H et al. Resistance to experimental colitis depends on cytoprotective heat shock proteins in macrophage migration inhibitory factor null mice. Immunol Lett 2006; 107: 148–154.

    CAS  PubMed  Google Scholar 

  72. Okamura R, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R . Redundant regulation of T cell differentiation and TCR alpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998; 8: 11–20.

    CAS  PubMed  Google Scholar 

  73. van de Wetering M, Oosterwegel M, Holstege F, Dooyes D, Suijkerbuijk R, Geurts van Kessel A et al. The human T cell transcription factor-1 gene. Structure, localization, and promoter characterization. J Biol Chem 1992; 267: 8530–8536.

    CAS  PubMed  Google Scholar 

  74. Eickhoff H, Schuchhardt J, Ivanov I, Meier-Ewert S, O'Brien J, Malik A et al. Tissue gene expression analysis using arrayed normalized cDNA libraries. Genome Res 2000; 10: 1230–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Boer JM, Huber WK, Sultmann H, Wilmer F, von Heydebreck A, Haas S et al. Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31 500-element cDNA array. Genome Res 2001; 11: 1861–1870.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Feinberg AP, Vogelstein B . A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 1983; 132: 6–13.

    CAS  PubMed  Google Scholar 

  77. Mah N, Thelin A, Lu T, Nikolaus S, Kuhbacher T, Gurbuz Y et al. A comparison of oligonucleotide and cDNA-based microarray systems. Physiol Genomics 2004; 16: 361–370.

    CAS  PubMed  Google Scholar 

  78. Costello CM, Mah N, Hasler R, Rosenstiel P, Waetzig GH, Hahn A et al. Dissection of the inflammatory bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med 2005; 2: e199.

    PubMed  PubMed Central  Google Scholar 

  79. Hoyle DC, Rattray M, Jupp R, Brass A . Making sense of microarray data distributions. Bioinformatics 2002; 18: 576–584.

    CAS  PubMed  Google Scholar 

  80. Lu T, Costello CM, Croucher PJ, Hasler R, Deuschl G, Schreiber S . Can Zipf's law be adapted to normalize microarrays? BMC Bioinformatics 2005; 6: 37.

    PubMed  PubMed Central  Google Scholar 

  81. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Deutsche Forschungsgemeinschaft (SFB415) and from the Pathway Mapping Network within the National Genome Research Network (NFGN) from the German Ministry of Education and Research (BMBF). The support of Holger Eickhoff and Hans Lehrach, Max-Planck-Institute for Molecular Genetics, Berlin, Germany, providing microarray technology is gratefully acknowledged. The histopathological evaluation of biopsy samples was kindly performed by Yesim Gurbuz and Günther Klöppel, Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany. Brigitte Mauracher, Dorina Oelsner and Katja Tamms are especially thanked for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Schreiber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, H., Häsler, R., Mah, N. et al. From model cell line to in vivo gene expression: disease-related intestinal gene expression in IBD. Genes Immun 9, 240–248 (2008). https://doi.org/10.1038/gene.2008.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.11

Keywords

This article is cited by

Search

Quick links