Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The good and evil of complement activation in HIV-1 infection

Abstract

The complement system, a key component of innate immunity, is a first-line defender against foreign pathogens such as HIV-1. The role of the complement system in HIV-1 pathogenesis appears to be multifaceted. Although the complement system plays critical roles in clearing and neutralizing HIV-1 virions, it also represents a critical factor for the spread and maintenance of the virus in the infected host. In addition, complement regulators such as human CD59 present in the envelope of HIV-1 prevent complement-mediated lysis of HIV-1. Some novel approaches are proposed to combat HIV-1 infection through the enhancement of antibody-dependent complement activity against HIV-1. In this paper, we will review these diverse roles of complement in HIV-1 infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Qin X, Gao B . The complement system in liver diseases. Cell Mol Immunol 2006; 3: 333–340.

    CAS  PubMed  Google Scholar 

  2. Zhou X, Hu W, Qin X . The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist 2008; 13: 954–966.

    CAS  PubMed  Google Scholar 

  3. Morgan BP, Berg CW, Harris CL . “Homologous restriction” in complement lysis: roles of membrane complement regulators. Xenotransplantation 2005; 12: 258–265.

    PubMed  Google Scholar 

  4. Morgan BP . Regulation of the complement membrane attack pathway. Crit Rev Immunol 1999; 19: 173–198.

    CAS  PubMed  Google Scholar 

  5. Walport MJ . Complement. First of two parts. N Engl J Med 2001; 344: 1058–1066.

    CAS  PubMed  Google Scholar 

  6. Mayer MM . Complement. Historical perspectives and some current issues. Complement 1984; 1: 2–26.

    CAS  PubMed  Google Scholar 

  7. Medof ME, Lublin DM, Holers VM, Ayers DJ, Getty RR, Leykam JF et al. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci USA 1987; 84: 2007–2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Davitz MA, Low MG, Nussenzweig V . Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). J Exp Med 1986; 163: 1150–1161.

    CAS  PubMed  Google Scholar 

  9. Nicholson-Weller A, Spicer DB, Austen KF . Deficiency of the complement regulatory protein, “decay-accelerating factor,” on membranes of granulocytes, monocytes, and platelets in paroxysmal nocturnal hemoglobinuria. N Engl J Med 1985; 312: 1091–1097.

    CAS  PubMed  Google Scholar 

  10. Brodbeck WG, Mold C, Atkinson JP, Medof ME . Cooperation between decay-accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack. J Immunol 2000; 165: 3999–4006.

    CAS  PubMed  Google Scholar 

  11. Sugita Y, Tobe T, Oda E, Tomita M, Yasukawa K, Yamaji N et al. Molecular cloning and characterization of MACIF, an inhibitor of membrane channel formation of complement. J Biochem (Tokyo) 1989; 106: 555–557.

    CAS  Google Scholar 

  12. Acosta J, Qin X, Halperin J . Complement and complement regulatory proteins as potential molecular targets for vascular diseases. Curr Pharm Des 2004; 10: 203–211.

    CAS  PubMed  Google Scholar 

  13. Stoiber H, Speth C, Dierich MP . Role of complement in the control of HIV dynamics and pathogenesis. Vaccine 2003; 21( Suppl 2): S77–S82.

    PubMed  Google Scholar 

  14. Stoiber H, Kacani L, Speth C, Wurzner R, Dierich MP . The supportive role of complement in HIV pathogenesis. Immunol Rev 2001; 180: 168–176.

    CAS  PubMed  Google Scholar 

  15. Senaldi G, Peakman M, McManus T, Davies ET, Tee DE, Vergani D . Activation of the complement system in human immunodeficiency virus infection: relevance of the classical pathway to pathogenesis and disease severity. J Infect Dis 1990; 162: 1227–1232.

    CAS  PubMed  Google Scholar 

  16. Spear GT, Takefman DM, Sullivan BL, Landay AL, Zolla-Pazner S . Complement activation by human monoclonal antibodies to human immunodeficiency virus. J Virol 1993; 67: 53–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huber M, Fischer M, Misselwitz B, Manrique A, Kuster H, Niederost B et al. Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV-1 infection. PLoS Med 2006; 3: e441.

    PubMed  PubMed Central  Google Scholar 

  18. Ebenbichler CF, Thielens NM, Vornhagen R, Marschang P, Arlaud GJ, Dierich MP . Human immunodeficiency virus type 1 activates the classical pathway of complement by direct C1 binding through specific sites in the transmembrane glycoprotein gp41. J Exp Med 1991; 174: 1417–1424.

    CAS  PubMed  Google Scholar 

  19. Spear GT, Jiang HX, Sullivan BL, Gewurz H, Landay AL, Lint TF . Direct binding of complement component C1q to human immunodeficiency virus (HIV) and human T lymphotrophic virus-I (HTLV-I) coinfected cells. AIDS Res Hum Retroviruses 1991; 7: 579–585.

    CAS  PubMed  Google Scholar 

  20. Haurum JS, Thiel S, Jones IM, Fischer PB, Laursen SB, Jensenius JC . Complement activation upon binding of mannan-binding protein to HIV envelope glycoproteins. AIDS 1993; 7: 1307–1313.

    CAS  PubMed  Google Scholar 

  21. Thielens NM, Bally IM, Ebenbichler CF, Dierich MP, Arlaud GJ . Further characterization of the interaction between the C1q subcomponent of human C1 and the transmembrane envelope glycoprotein gp41 of HIV-1. J Immunol 1993; 151: 6583–6592.

    CAS  PubMed  Google Scholar 

  22. Thielens NM, Bally IM, Ebenbichler CF, Dierich MP, Arlaud GJ . Interaction of C1 with HIV-1. Behring Inst Mitt 1993; (93): 165–170.

  23. Stoiber H, Thielens NM, Ebenbichler C, Arlaud GJ, Dierich MP . The envelope glycoprotein of HIV-1 gp120 and human complement protein C1q bind to the same peptides derived from three different regions of gp41, the transmembrane glycoprotein of HIV-1, and share antigenic homology. Eur J Immunol 1994; 24: 294–300.

    CAS  PubMed  Google Scholar 

  24. Stoiber H, Ebenbichler C, Schneider R, Janatova J, Dierich MP . Interaction of several complement proteins with gp120 and gp41, the two envelope glycoproteins of HIV-1. AIDS 1995; 9: 19–26.

    CAS  PubMed  Google Scholar 

  25. Susal C, Kirschfink M, Kropelin M, Daniel V, Opelz G . Identification of complement activation sites in human immunodeficiency virus type-1 glycoprotein gp120. Blood 1996; 87: 2329–2336.

    CAS  PubMed  Google Scholar 

  26. Aasa-Chapman MM, Holuigue S, Aubin K, Wong M, Jones NA, Cornforth D et al. Detection of antibody-dependent complement-mediated inactivation of both autologous and heterologous virus in primary human immunodeficiency virus type 1 infection. J Virol 2005; 79: 2823–2830.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sullivan BL, Knopoff EJ, Saifuddin M, Takefman DM, Saarloos MN, Sha BE et al. Susceptibility of HIV-1 plasma virus to complement-mediated lysis. Evidence for a role in clearance of virus in vivo. J Immunol 1996; 157: 1791–1798.

    CAS  PubMed  Google Scholar 

  28. Sullivan BL, Takefman DM, Spear GT . Complement can neutralize HIV-1 plasma virus by a C5-independent mechanism. Virology 1998; 248: 173–181.

    CAS  PubMed  Google Scholar 

  29. Posner MR, Elboim HS, Cannon T, Cavacini L, Hideshima T . Functional activity of an HIV-1 neutralizing IgG human monoclonal antibody: ADCC and complement-mediated lysis. AIDS Res Hum Retroviruses 1992; 8: 553–558.

    CAS  PubMed  Google Scholar 

  30. Gauduin MC, Parren PW, Weir R, Barbas CF, Burton DR, Koup RA . Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nat Med 1997; 3: 1389–1393.

    CAS  PubMed  Google Scholar 

  31. Saifuddin M, Parker CJ, Peeples ME, Gorny MK, Zolla-Pazner S, Ghassemi M et al. Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CE59 in complement resistance of cell derived and primary isolates of HIV-1. J Exp Med 1995; 182: 501–509.

    CAS  PubMed  Google Scholar 

  32. Schmitz J, Zimmer JP, Kluxen B, Aries S, Bogel M, Gigli I et al. Antibody-dependent complement-mediated cytotoxicity in sera from patients with HIV-1 infection is controlled by CD55 and CD59. J Clin Invest 1995; 96: 1520–1526.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dierich MP, Stoiber H, Clivio A . A “complement-ary” AIDS vaccine. Nat Med 1996; 2: 153–155.

    CAS  PubMed  Google Scholar 

  34. Huber M, Trkola A . Humoral immunity to HIV-1: neutralization and beyond. J Intern Med 2007; 262: 5–25.

    CAS  PubMed  Google Scholar 

  35. Phogat S, Wyatt RT, Karlsson Hedestam GB . Inhibition of HIV-1 entry by antibodies: potential viral and cellular targets. J Intern Med 2007; 262: 26–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Phogat SK, Kaminsky SM, Koff WC . HIV-1 rational vaccine design: molecular details of b12-gp120 complex structure. Expert Rev Vaccines 2007; 6: 319–321.

    CAS  PubMed  Google Scholar 

  37. Willey S, Aasa-Chapman MM . Humoral immunity to HIV-1: neutralisation and antibody effector functions. Trends Microbiol 2008; 16: 596–604.

    CAS  PubMed  Google Scholar 

  38. Sattentau Q . Correlates of antibody-mediated protection against HIV infection. Curr Opin HIV AIDS 2008; 3: 368–374.

    PubMed  Google Scholar 

  39. Wyatt R, Sodroski J . The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 1998; 280: 1884–1888.

    CAS  PubMed  Google Scholar 

  40. Parren PW, Burton DR . The antiviral activity of antibodies in vitro and in vivo. Adv Immunol 2001; 77: 195–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiang SH, Doka N, Choudhary RK, Sodroski J, Robinson JE . Characterization of CD4-induced epitopes on the HIV type 1 gp120 envelope glycoprotein recognized by neutralizing human monoclonal antibodies. AIDS Res Hum Retroviruses 2002; 18: 1207–1217.

    CAS  PubMed  Google Scholar 

  42. Decker JM, Bibollet-Ruche F, Wei X, Wang S, Levy DN, Wang W et al. Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J Exp Med 2005; 201: 1407–1419.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 1996; 384: 184–187.

    CAS  PubMed  Google Scholar 

  44. Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 1996; 384: 179–183.

    CAS  PubMed  Google Scholar 

  45. Pantophlet R, Burton DR . GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 2006; 24: 739–769.

    CAS  PubMed  Google Scholar 

  46. Morris L . Neutralizing antibody responses to HIV-1 infection. IUBMB Life 2002; 53: 197–199.

    CAS  PubMed  Google Scholar 

  47. Pincus SH, Messer KG, Nara PL, Blattner WA, Colclough G, Reitz M . Temporal analysis of the antibody response to HIV envelope protein in HIV-infected laboratory workers. J Clin Invest 1994; 93: 2505–2513.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Belec L, Dupre T, Prazuck T, Tevi-Benissan C, Kanga JM, Pathey O et al. Cervicovaginal overproduction of specific IgG to human immunodeficiency virus (HIV) contrasts with normal or impaired IgA local response in HIV infection. J Infect Dis 1995; 172: 691–697.

    CAS  PubMed  Google Scholar 

  49. Binley JM, Klasse PJ, Cao Y, Jones I, Markowitz M, Ho DD et al. Differential regulation of the antibody responses to Gag and Env proteins of human immunodeficiency virus type 1. J Virol 1997; 71: 2799–2809.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pellegrin I, Legrand E, Neau D, Bonot P, Masquelier B, Pellegrin JL et al. Kinetics of appearance of neutralizing antibodies in 12 patients with primary or recent HIV-1 infection and relationship with plasma and cellular viral loads. J Acquir Immune Defic Syndr Hum Retrovirol 1996; 11: 438–447.

    CAS  PubMed  Google Scholar 

  51. Richman DD, Wrin T, Little SJ, Petropoulos CJ . Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci USA 2003; 100: 4144–4149.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Aasa-Chapman MM, Hayman A, Newton P, Cornforth D, Williams I, Borrow P et al. Development of the antibody response in acute HIV-1 infection. AIDS 2004; 18: 371–381.

    CAS  PubMed  Google Scholar 

  53. Humbert M, Dietrich U . The role of neutralizing antibodies in HIV infection. AIDS Rev 2006; 8: 51–59.

    PubMed  Google Scholar 

  54. Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 1993; 67: 6642–6647.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Burton DR, Pyati J, Koduri R, Sharp SJ, Thornton GB, Parren PW et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 1994; 266: 1024–1027.

    CAS  PubMed  Google Scholar 

  56. Binley JM, Wrin T, Korber B, Zwick MB, Wang M, Chappey C et al. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 2004; 78: 13232–13252.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 2001; 75: 10892–10905.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, Steindl F et al. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 2001; 17: 1757–1765.

    CAS  PubMed  Google Scholar 

  59. Muster T, Guinea R, Trkola A, Purtscher M, Klima A, Steindl F et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J Virol 1994; 68: 4031–4034.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Purtscher M, Trkola A, Gruber G, Buchacher A, Predl R, Steindl F et al. A broadly neutralizing human monoclonal antibody against gp41 of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1994; 10: 1651–1658.

    CAS  PubMed  Google Scholar 

  61. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 1996; 70: 1100–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Roben P, Moore JP, Thali M, Sodroski J, Barbas CF 3rd, Burton DR . Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J Virol 1994; 68: 4821–4828.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakowitsch S, Quendler H, Fekete H, Kunert R, Katinger H, Stiegler G . HIV-1 mutants escaping neutralization by the human antibodies 2F5, 2G12, and 4E10: in vitro experiments versus clinical studies. AIDS 2005; 19: 1957–1966.

    CAS  PubMed  Google Scholar 

  64. Manrique A, Rusert P, Joos B, Fischer M, Kuster H, Leemann C et al. In vivo and in vitro escape from neutralizing antibodies 2G12, 2F5, and 4E10. J Virol 2007; 81: 8793–8808.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R, Wilson IA et al. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1—>2 mannose residues on the outer face of gp120. J Virol 2002; 76: 7306–7321.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Calarese DA, Lee HK, Huang CY, Best MD, Astronomo RD, Stanfield RL et al. Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci USA 2005; 102: 13372–13377.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Burton DR, Stanfield RL, Wilson IA . Antibody vs. HIV in a clash of evolutionary titans. Proc Natl Acad Sci USA 2005; 102: 14943–14948.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, Katinger H et al. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 2005; 22: 163–173.

    CAS  PubMed  Google Scholar 

  69. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 2000; 6: 207–210.

    CAS  PubMed  Google Scholar 

  70. Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, Hayes D et al. Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 1999; 73: 4009–4018.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W, Ayehunie S et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 2000; 6: 200–206.

    CAS  PubMed  Google Scholar 

  72. Trkola A, Kuster H, Rusert P, Joos B, Fischer M, Leemann C et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat Med 2005; 11: 615–622.

    CAS  PubMed  Google Scholar 

  73. Parren PW, Moore JP, Burton DR, Sattentau QJ . The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS 1999; 13( Suppl A): S137–S162.

    CAS  PubMed  Google Scholar 

  74. Stoiber H, Soederholm A, Wilflingseder D, Gusenbauer S, Hildgartner A, Dierich MP . Complement and antibodies: a dangerous liaison in HIV infection? Vaccine 2008; 26( Suppl 8): I79–I85.

    CAS  PubMed  Google Scholar 

  75. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X et al. Antibody neutralization and escape by HIV-1. Nature 2003; 422: 307–312.

    CAS  PubMed  Google Scholar 

  76. Parren PW, Burton DR, Sattentau QJ . HIV-1 antibody – debris or virion? Nat Med 1997; 3: 366–367.

    CAS  PubMed  Google Scholar 

  77. Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, Grise H et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 2006; 441: 847–852.

    CAS  PubMed  Google Scholar 

  78. Moore JP, McKeating JA, Weiss RA, Sattentau QJ . Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 1990; 250: 1139–1142.

    CAS  PubMed  Google Scholar 

  79. McKeating JA, McKnight A, Moore JP . Differential loss of envelope glycoprotein gp120 from virions of human immunodeficiency virus type 1 isolates: effects on infectivity and neutralization. J Virol 1991; 65: 852–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Poignard P, Moulard M, Golez E, Vivona V, Franti M, Venturini S et al. Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and nonneutralizing antibodies. J Virol 2003; 77: 353–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Simon V, Ho DD . HIV-1 dynamics in vivo: implications for therapy. Nat Rev Microbiol 2003; 1: 181–190.

    CAS  PubMed  Google Scholar 

  82. Archer J, Pinney JW, Fan J, Simon-Loriere E, Arts EJ, Negroni M et al. Identifying the important HIV-1 recombination breakpoints. PLoS Comput Biol 2008; 4: e1000178.

    PubMed  PubMed Central  Google Scholar 

  83. Lemey P, Rambaut A, Pybus OG . HIV evolutionary dynamics within and among hosts. AIDS Rev 2006; 8: 125–140.

    PubMed  Google Scholar 

  84. Hangartner L, Zellweger RM, Giobbi M, Weber J, Eschli B, McCoy KD et al. Nonneutralizing antibodies binding to the surface glycoprotein of lymphocytic choriomeningitis virus reduce early virus spread. J Exp Med 2006; 203: 2033–2042.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ward R . Mechanisms of protection against rotavirus infection and disease. Pediatr Infect Dis J 2009; 28: S57-59.

    PubMed  Google Scholar 

  86. Taylor G, Stott EJ, Bew M, Fernie BF, Cote PJ, Collins AP et al. Monoclonal antibodies protect against respiratory syncytial virus infection in mice. Immunology 1984; 52: 137–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Walsh EE, Hall CB, Schlesinger JJ, Brandriss MW, Hildreth S, Paradiso P . Comparison of antigenic sites of subtype-specific respiratory syncytial virus attachment proteins. J Gen Virol 1989; 70( Pt 11): 2953–2961.

    CAS  PubMed  Google Scholar 

  88. Girard MP, Osmanov SK, Kieny MP . A review of vaccine research and development: the human immunodeficiency virus (HIV). Vaccine 2006; 24: 4062–4081.

    CAS  PubMed  Google Scholar 

  89. Kutzler MA, Weiner DB . DNA vaccines: ready for prime time? Nat Rev Genet 2008; 9: 776–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lu S . Immunogenicity of DNA vaccines in humans: it takes two to tango. Hum Vaccin 2008; 4: 449–452.

    CAS  PubMed  Google Scholar 

  91. Robinson HL . HIV/AIDS vaccines: 2007. Clin Pharmacol Ther 2007; 82: 686–693.

    CAS  PubMed  Google Scholar 

  92. De Rosa SD, McElrath MJ . T cell responses generated by HIV vaccines in clinical trials. Curr Opin HIV AIDS 2008; 3: 375–379.

    PubMed  Google Scholar 

  93. Voltan R, Robert-Guroff M . Live recombinant vectors for AIDS vaccine development. Curr Mol Med 2003; 3: 273–284.

    CAS  PubMed  Google Scholar 

  94. Amara RR, Robinson HL . A new generation of HIV vaccines. Trends Mol Med 2002; 8: 489–495.

    CAS  PubMed  Google Scholar 

  95. Coutsinos Z, Absi Z, Henin Y, Guillet JG, Launay O . Designing an effective AIDS vaccine: strategies and current status. Rev Med Interne 2008; 29: 632–641. French

    CAS  PubMed  Google Scholar 

  96. Rerks-Ngarm S, Brown AE, Khamboonruang C, Thongcharoen P, Kunasol P . HIV/AIDS preventive vaccine ‘prime-boost’ phase III trial: foundations and initial lessons learned from Thailand. AIDS 2006; 20: 1471–1479.

    PubMed  Google Scholar 

  97. Letvin NL . Progress toward an HIV vaccine. Annu Rev Med 2005; 56: 213–223.

    CAS  PubMed  Google Scholar 

  98. Walker BD, Burton DR . Toward an AIDS vaccine. Science 2008; 320: 760–764.

    CAS  PubMed  Google Scholar 

  99. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ . The challenge of finding a cure for HIV infection. Science 2009; 323: 1304–1307.

    CAS  PubMed  Google Scholar 

  100. Stamatatos L, Morris L, Burton DR, Mascola JR . Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med 2009; 15: 866–870.

    CAS  PubMed  Google Scholar 

  101. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009; 326: 285–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ji X, Gewurz H, Spear GT . Mannose binding lectin (MBL) and HIV. Mol Immunol 2005; 42: 145–152.

    CAS  PubMed  Google Scholar 

  103. Ezekowitz RA, Kuhlman M, Groopman JE, Byrn RA . A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J Exp Med 1989; 169: 185–196.

    CAS  PubMed  Google Scholar 

  104. Saifuddin M, Hart ML, Gewurz H, Zhang Y, Spear GT . Interaction of mannose-binding lectin with primary isolates of human immunodeficiency virus type 1. J Gen Virol 2000; 81: 949–955.

    CAS  PubMed  Google Scholar 

  105. Ying H, Ji X, Hart ML, Gupta K, Saifuddin M, Zariffard MR et al. Interaction of mannose-binding lectin with HIV type 1 is sufficient for virus opsonization but not neutralization. AIDS Res Hum Retroviruses 2004; 20: 327–335.

    CAS  PubMed  Google Scholar 

  106. Hart ML, Saifuddin M, Spear GT . Glycosylation inhibitors and neuraminidase enhance human immunodeficiency virus type 1 binding and neutralization by mannose-binding lectin. J Gen Virol 2003; 84: 353–360.

    CAS  PubMed  Google Scholar 

  107. Singh KK, Lieser A, Ruan PK, Fenton T, Spector SA . An age-dependent association of mannose-binding lectin-2 genetic variants on HIV-1-related disease in children. J Allergy Clin Immunol 2008; 122: 173–180, 180.e1–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tan Y, Liu L, Luo P, Wang A, Jia T, Shen X et al. Association between mannose-binding lectin and HIV infection and progression in a Chinese population. Mol Immunol 2009; 47: 632–638.

    CAS  PubMed  Google Scholar 

  109. Pruenster M, Wilflingseder D, Banki Z, Ammann CG, Muellauer B, Meyer M et al. C-type lectin-independent interaction of complement opsonized HIV with monocyte-derived dendritic cells. Eur J Immunol 2005; 35: 2691–2698.

    CAS  PubMed  Google Scholar 

  110. Bajtay Z, Speth C, Erdei A, Dierich MP . Cutting edge: productive HIV-1 infection of dendritic cells via complement receptor type 3 (CR3, CD11b/CD18). J Immunol 2004; 173: 4775–4778.

    CAS  PubMed  Google Scholar 

  111. Nielsen SD, Sorensen AM, Schonning K, Lund O, Nielsen JO, Hansen JE . Complement-mediated enhancement of HIV-1 infection in peripheral blood mononuclear cells. Scand J Infect Dis 1997; 29: 447–452.

    CAS  PubMed  Google Scholar 

  112. Prohaszka Z, Nemes J, Hidvegi T, Toth FD, Kerekes K, Erdei A et al. Two parallel routes of the complement-mediated antibody-dependent enhancement of HIV-1 infection. AIDS 1997; 11: 949–958.

    CAS  PubMed  Google Scholar 

  113. Malhotra R, Thiel S, Reid KB, Sim RB . Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med 1990; 172: 955–959.

    CAS  PubMed  Google Scholar 

  114. Delibrias CC, Kazatchkine MD, Fischer E . Evidence for the role of CR1 (CD35), in addition to CR2 (CD21), in facilitating infection of human T cells with opsonized HIV. Scand J Immunol 1993; 38: 183–189.

    CAS  PubMed  Google Scholar 

  115. Lund O, Hansen J, Soorensen AM, Mosekilde E, Nielsen JO, Hansen JE . Increased adhesion as a mechanism of antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus infection. J Virol 1995; 69: 2393–2400.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Stoiber H, Frank I, Spruth M, Schwendinger M, Mullauer B, Windisch JM et al. Inhibition of HIV-1 infection in vitro by monoclonal antibodies to the complement receptor type 3 (CR3): an accessory role for CR3 during virus entry? Mol Immunol 1997; 34: 855–863.

    CAS  PubMed  Google Scholar 

  117. Kacani L, Banki Z, Zwirner J, Schennach H, Bajtay Z, Erdei A et al. C5a and C5a(desArg) enhance the susceptibility of monocyte-derived macrophages to HIV infection. J Immunol 2001; 166: 3410–3415.

    CAS  PubMed  Google Scholar 

  118. Soederholm A, Banki Z, Wilflingseder D, Gassner C, Zwirner J, Lopez-Trascasa M et al. HIV-1 induced generation of C5a attracts immature dendriticcells and promotes infection of autologous T cells. Eur J Immunol 2007; 37: 2156–2163.

    CAS  PubMed  Google Scholar 

  119. Speth C, Schabetsberger T, Mohsenipour I, Stockl G, Wurzner R, Stoiber H et al. Mechanism of human immunodeficiency virus-induced complement expression in astrocytes and neurons. J Virol 2002; 76: 3179–3188.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Horakova E, Gasser O, Sadallah S, Inal JM, Bourgeois G, Ziekau I et al. Complement mediates the binding of HIV to erythrocytes. J Immunol 2004; 173: 4236–4241.

    CAS  PubMed  Google Scholar 

  121. Banki Z, Wilflingseder D, Ammann CG, Pruenster M, Mullauer B, Hollander K et al. Factor I-mediated processing of complement fragments on HIV immune complexes targets HIV to CR2-expressing B cells and facilitates B cell-mediated transmission of opsonized HIV to T cells. J Immunol 2006; 177: 3469–3476.

    CAS  PubMed  Google Scholar 

  122. Hess C, Klimkait T, Schlapbach L, del Zenero V, Sadallah S, Horakova E et al. Association of a pool of HIV-1 with erythrocytes in vivo: a cohort study. Lancet 2002; 359: 2230–2234.

    PubMed  Google Scholar 

  123. Moir S, Malaspina A, Li Y, Chun TW, Lowe T, Adelsberger J et al. B cells of HIV-1-infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T cells. J Exp Med 2000; 192: 637–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dopper S, Wilflingseder D, Prodinger WM, Stiegler G, Speth C, Dierich MP et al. Mechanism(s) promoting HIV-1 infection of primary unstimulated T lymphocytes in autologous B cell/T cell co-cultures. Eur J Immunol 2003; 33: 2098–2107.

    PubMed  Google Scholar 

  125. Jakubik JJ, Saifuddin M, Takefman DM, Spear GT . B lymphocytes in lymph nodes and peripheral blood are important for binding immune complexes containing HIV-1. Immunology 1999; 96: 612–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jakubik JJ, Saifuddin M, Takefman DM, Spear GT . Immune complexes containing human immunodeficiency virus type 1 primary isolates bind to lymphoid tissue B lymphocytes and are infectious for T lymphocytes. J Virol 2000; 74: 552–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu Y, Zhang C, Jia L, Wen C, Liu H, Wang Y et al. A novel approach to inhibit HIV-1 infection and enhance lysis of HIV by a targeted activator of complement. Virol J 2009; 6: 123.

    PubMed  PubMed Central  Google Scholar 

  128. Stoiber H, Clivio A, Dierich MP . Role of complement in HIV infection. Annu Rev Immunol 1997; 15: 649–674.

    CAS  PubMed  Google Scholar 

  129. Stoiber H, Pinter C, Siccardi AG, Clivio A, Dierich MP . Efficient destruction of human immunodeficiency virus in human serum by inhibiting the protective action of complement factor H and decay accelerating factor (DAF, CD55). J Exp Med 1996; 183: 307–310.

    CAS  PubMed  Google Scholar 

  130. Spiller OB, Hanna SM, Devine DV, Tufaro F . Neutralization of cytomegalovirus virions: the role of complement. J Infect Dis 1997; 176: 339–347.

    CAS  PubMed  Google Scholar 

  131. Nguyen DH, Hildreth JE . Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 2000; 74: 3264–3272.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Rautemaa R, Helander T, Meri S . Herpes simplex virus 1 infected neuronal and skin cells differ in their susceptibility to complement attack. Immunology 2002; 106: 404–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bernet J, Mullick J, Singh AK, Sahu A . Viral mimicry of the complement system. J Biosci 2003; 28: 249–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Stoiber H, Pruenster M, Ammann CG, Dierich MP . Complement-opsonized HIV: the free rider on its way to infection. Mol Immunol 2005; 42: 153–160.

    CAS  PubMed  Google Scholar 

  135. Fritzinger AE, Toney DM, MacLean RC, Marciano-Cabral F . Identification of a Naegleria fowleri membrane protein reactive with anti-human CD59 antibody. Infect Immun 2006; 74: 1189–1195.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Saifuddin M, Hedayati T, Atkinson JP, Holguin MH, Parker CJ, Spear GT . Human immunodeficiency virus type 1 incorporates both glycosyl phosphatidylinositol-anchored CD55 and CD59 and integral membrane CD46 at levels that protect from complement-mediated destruction. J Gen Virol 1997; 78: 1907–1911.

    CAS  PubMed  Google Scholar 

  137. Hu W, Yu Q, Hu N, Byrd D, Amet T, Shikuma C et al. A high-affinity inhibitor of human CD59 enhances complement-mediated virolysis of HIV-1: implications for treatment of HIV-1/AIDS. J Immunol 2010; 184: 359–368.

    CAS  PubMed  Google Scholar 

  138. Golay J, Lazzari M, Facchinetti V, Bernasconi S, Borleri G, Barbui T et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 2001; 98: 3383–3389.

    CAS  PubMed  Google Scholar 

  139. Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 2000; 95: 3900–3908.

    CAS  PubMed  Google Scholar 

  140. Takei K, Yamazaki T, Sawada U, Ishizuka H, Aizawa S . Analysis of changes in CD20, CD55, and CD59 expression on established rituximab-resistant B-lymphoma cell lines. Leuk Res 2006; 30: 625–631.

    CAS  PubMed  Google Scholar 

  141. Ziller F, Macor P, Bulla R, Sblattero D, Marzari R, Tedesco F . Controlling complement resistance in cancer by using human monoclonal antibodies that neutralize complement-regulatory proteins CD55 and CD59. Eur J Immunol 2005; 35: 2175–2183.

    CAS  PubMed  Google Scholar 

  142. Macor P, Piovan E, Zorzet S, Tripodo C, Marzari R, Amadori A et al. Neutralizing human antibodies against CD55 and CD59 targeted to lymphoma cells in vivo potentiate the therapeutic effect of Rituximab. Mol Immunol 2007; 44: 212.

    Google Scholar 

  143. Macor P, Tripodo C, Zorzet S, Piovan E, Bossi F, Marzari R et al. In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res 2007; 67: 10556–10563.

    CAS  PubMed  Google Scholar 

  144. Zhao XJ, Zhao J, Zhou Q, Sims PJ . Identity of the residues responsible for the species-restricted complement inhibitory function of human CD59. J Biol Chem 1998; 273: 10665–10671.

    CAS  PubMed  Google Scholar 

  145. Bodian DL, Davis SJ, Morgan BP, Rushmere NK . Mutational analysis of the active site and antibody epitopes of the complement-inhibitory glycoprotein, CD59. J Exp Med 1997; 185: 507–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Husler T, Lockert DH, Sims PJ . Role of a disulfide-bonded peptide loop within human complement C9 in the species-selectivity of complement inhibitor CD59. Biochemistry 1995; 35: 3263–3269.

    Google Scholar 

  147. Huang Y, Fedarovich A, Tomlinson S, Davies C . Crystal structure of CD59: implications for molecular recognition of the complement proteins C8 and C9 in the membrane-attack complex. Acta Crystallogr D Biol Crystallogr 2007; 63: 714–721.

    CAS  PubMed  Google Scholar 

  148. Huang Y, Qiao F, Abagyan R, Hazard S, Tomlinson S . Defining the CD59–C9 binding interaction. J Biol Chem 2006; 281: 27398–27404.

    CAS  PubMed  Google Scholar 

  149. Terpos E, Sarantopoulos A, Kouramba A, Katsarou O, Stavropoulos J, Masouridi S et al. Reduction of CD55 and/or CD59 in red blood cells of patients with HIV infection. Med Sci Monit 2008; 14: CR276–CR280.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Yu, R. & Qin, X. The good and evil of complement activation in HIV-1 infection. Cell Mol Immunol 7, 334–340 (2010). https://doi.org/10.1038/cmi.2010.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.8

Keywords

This article is cited by

Search

Quick links