Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Advantages of bioluminescence imaging to follow siRNA or chemotherapeutic treatments in osteosarcoma preclinical models

Abstract

Osteosarcoma is the most common malignant primary bone tumor for which pertinent preclinical models are still needed to develop new therapeutic strategies. As osteosarcoma growth is strongly supported by bone resorption, previous studies have inhibited the cytokine receptor activator of nuclear factor-κB ligand using antibodies or recombinant proteins. However, its expression has not yet been inhibited using genetic approaches using small interfering RNA. To optimize the delivery of small interfering RNA to its cellular target and demonstrate their efficiency in vivo, two new osteosarcoma models expressing the firefly luciferase enzyme were developed. These luciferase-expressing osteosarcomas showed conserved osteolytic and osteogenic activities in mice and were detectable by in vivo bioluminescence imaging. In comparison with measurement of tumor volume, bioluminescence analysis enabled earlier tumor detection and revealed extensive cell death in response to ifosfamide treatment. Finally, by targeting the luciferase expression into osteosarcoma, we established a protocol for in vivo administration of small interfering RNA combined with cationic liposome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Picci P . Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis 2007; 2: 6.

    Article  Google Scholar 

  2. Ward WG, Mikaelian K, Dorey F, Mirra JM, Sassoon A, Holmes EC et al. Pulmonary metastases of stage IIB extremity osteosarcoma and subsequent pulmonary metastases. J Clin Oncol 1994; 12: 1849–1858.

    Article  CAS  Google Scholar 

  3. Ferrari S, Bertoni F, Mercuri M, Picci P, Giacomini S, Longhi A et al. Predictive factors of disease-free survival for non-metastatic osteosarcoma of the extremity: an analysis of 300 patients treated at the Rizzoli Institute. Ann Oncol 2001; 12: 1145–1150.

    Article  CAS  Google Scholar 

  4. Lamoureux F, Trichet V, Chipoy C, Blanchard F, Gouin F, Redini F . Recent advances in the management of osteosarcoma and forthcoming therapeutic strategies. Expert Rev Anticancer Ther 2007; 7: 169–181.

    Article  CAS  Google Scholar 

  5. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA . Molecular biology of bone metastasis. Mol Cancer Ther 2007; 6: 2609–2617.

    Article  CAS  Google Scholar 

  6. Oyajobi BO, Anderson DM, Traianedes K, Williams PJ, Yoneda T, Mundy GR . Therapeutic efficacy of a soluble receptor activator of nuclear factor kappaB-IgG Fc fusion protein in suppressing bone resorption and hypercalcemia in a model of humoral hypercalcemia of malignancy. Cancer Res 2001; 61: 2572–2578.

    CAS  PubMed  Google Scholar 

  7. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N et al. Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 2001; 98: 11581–11586.

    Article  CAS  Google Scholar 

  8. Zhang J, Dai J, Yao Z, Lu Y, Dougall W, Keller ET . Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res 2003; 63: 7883–7890.

    CAS  PubMed  Google Scholar 

  9. Croucher PI, Shipman CM, Lippitt J, Perry M, Asosingh K, Hijzen A et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 2001; 98: 3534–3540.

    Article  CAS  Google Scholar 

  10. Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ . Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 2001; 61: 4432–4436.

    CAS  PubMed  Google Scholar 

  11. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006; 440: 692–696.

    Article  CAS  Google Scholar 

  12. Heath DJ, Vanderkerken K, Cheng X, Gallagher O, Prideaux M, Murali R et al. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma. Cancer Res 2007; 67: 202–208.

    Article  CAS  Google Scholar 

  13. Lamoureux F, Richard P, Wittrant Y, Battaglia S, Pilet P, Trichet V et al. Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer Res 2007; 67: 7308–7318.

    Article  CAS  Google Scholar 

  14. Lamoureux F, Picarda G, Rousseau J, Gourden C, Battaglia S, Charrier C et al. Therapeutic efficacy of soluble receptor activator of nuclear factor-kappa B-Fc delivered by nonviral gene transfer in a mouse model of osteolytic osteosarcoma. Mol Cancer Ther 2008; 7: 3389–3398.

    Article  CAS  Google Scholar 

  15. Schwarz EM, Ritchlin CT . Clinical development of anti-RANKL therapy. Arthritis Res Ther 2007; 9 (Suppl 1): S7.

    Article  Google Scholar 

  16. Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC . Prospects of RNA interference therapy for cancer. Gene Ther 2006; 13: 464–477.

    Article  CAS  Google Scholar 

  17. Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, Hobel S et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther 2006; 17: 751–766.

    Article  CAS  Google Scholar 

  18. Bisanz K, Yu J, Edlund M, Spohn B, Hung MC, Chung LW et al. Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther 2005; 12: 634–643.

    Article  CAS  Google Scholar 

  19. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ . Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005; 65: 8984–8992.

    Article  CAS  Google Scholar 

  20. Wang D, Zhong ZY, Li MX, Xiang DB, Li ZP . Vector-based Ape1 small interfering RNA enhances the sensitivity of human osteosarcoma cells to endostatin in vivo. Cancer Sci 2007; 98: 1993–2001.

    Article  CAS  Google Scholar 

  21. Wang R, Dong K, Lin F, Wang X, Gao P, Wei SH et al. Inhibiting proliferation and enhancing chemosensitivity to taxanes in osteosarcoma cells by RNA interference-mediated downregulation of stathmin expression. Mol Med 2007; 13: 567–575.

    Article  CAS  Google Scholar 

  22. Xie FY, Woodle MC, Lu PY . Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov Today 2006; 11: 67–73.

    Article  CAS  Google Scholar 

  23. De Fougerolles AR . Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 2008; 19: 125–132.

    Article  CAS  Google Scholar 

  24. Takeshita F, Hokaiwado N, Honma K, Banas A, Ochiya T . Local and systemic delivery of siRNAs for oligonucleotide therapy. Methods Mol Biol 2009; 487: 83–92.

    CAS  PubMed  Google Scholar 

  25. Cherrier B, Gouin F, Heymann MF, Thiery JP, Redini F, Heymann D et al. A new experimental rat model of osteosarcoma established by intrafemoral tumor cell inoculation, useful for biology and therapy investigations. Tumour Biol 2005; 26: 121–130.

    Article  CAS  Google Scholar 

  26. Khoury M, Louis-Plence P, Escriou V, Noel D, Largeau C, Cantos C et al. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthritis Rheum 2006; 54: 1867–1877.

    Article  CAS  Google Scholar 

  27. Rhinn H, Largeau C, Bigey P, Kuen RL, Richard M, Scherman D et al. Escriou how to make siRNA lipoplexes efficient? Add a DNA cargo. Biochim Biophys Acta 2009; 1790: 219–230.

    Article  CAS  Google Scholar 

  28. Jasmin C, Allouche M, Jude JG, Klein B, Thiery JP, Perdereau B et al. An experimental model of osteosarcomas in rats. Sem Hop 1982; 58: 1684–1689.

    CAS  PubMed  Google Scholar 

  29. Uesugi M, Koshino T, Mitsugi N, Hiruma T . Predictive value of serum immunosuppressive acidic protein for lung metastasis after amputation of murine osteosarcoma of the lower limb. Cancer Lett 2000; 155: 169–172.

    Article  CAS  Google Scholar 

  30. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002; 13: 803–813.

    Article  CAS  Google Scholar 

  31. Qin XF, An DS, Chen IS, Baltimore D . Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 2003; 100: 183–188.

    Article  CAS  Google Scholar 

  32. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: RESEARCH0034.

    Article  Google Scholar 

  33. Chipoy C, Berreur M, Couillaud S, Pradal G, Vallette F, Colombeix C et al. Downregulation of osteoblast markers and induction of the glial fibrillary acidic protein by oncostatin M in osteosarcoma cells require PKCdelta and STAT3. J Bone Miner Res 2004; 19: 1850–1861.

    Article  CAS  Google Scholar 

  34. Heymann D, Ory B, Blanchard F, Heymann MF, Coipeau P, Charrier C et al. Enhanced tumor regression and tissue repair when zoledronic acid is combined with ifosfamide in rat osteosarcoma. Bone 2005; 37: 74–86.

    Article  CAS  Google Scholar 

  35. Huvos AG, Rosen G, Marcove RC . Primary osteogenic sarcoma: pathologic aspects in 20 patients after treatment with chemotherapy en bloc resection, and prosthetic bone replacement. Arch Pathol Lab Med 1977; 101: 14–18.

    CAS  PubMed  Google Scholar 

  36. Haussecker D . The business of RNAi therapeutics. Hum Gene Ther 2008; 19: 451–462.

    Article  CAS  Google Scholar 

  37. Nguyen T, Menocal EM, Harborth J, Fruehauf JH . RNAi therapeutics: an update on delivery. Curr Opin Mol Ther 2008; 10: 158–167.

    CAS  PubMed  Google Scholar 

  38. Robbins M, Judge A, MacLachlan I . siRNA and innate immunity. Oligonucleotides 2009; 19: 89–102.

    Article  CAS  Google Scholar 

  39. Robbins M, Judge A, Ambegia E, Choi C, Yaworski E, Palmer L et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther 2008; 19: 991–999.

    Article  CAS  Google Scholar 

  40. Chirgwin JM, Guise TA . Skeletal metastases: decreasing tumor burden by targeting the bone microenvironment. J Cell Biochem 2007; 102: 1333–1342.

    Article  CAS  Google Scholar 

  41. Paget S . The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 1989; 8: 98–101.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Région des Pays de la Loire (JG/ND/RECH N 660, fellowship for JR) and the Agence Nationale de la Recherche 2007 ‘Pathophysiology of Human diseases’ Project N R07196NS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Trichet.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousseau, J., Escriou, V., Perrot, P. et al. Advantages of bioluminescence imaging to follow siRNA or chemotherapeutic treatments in osteosarcoma preclinical models. Cancer Gene Ther 17, 387–397 (2010). https://doi.org/10.1038/cgt.2009.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.89

Keywords

Search

Quick links