Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

High-dose chemotherapy augments the efficacy of recombinant adenovirus vaccines and improves the therapeutic outcome

Abstract

We have investigated the therapeutic potential of a prototypic melanoma vaccine based on recombinant adenovirus expressing human dopachrome tautomerase in the B16F10 murine melanoma model. We found that in the presence of a tumor, the magnitude of T-cell immunity evoked by the vaccine was significantly reduced. This impairment was compounded by defects in cytokine production and degranulation within the tumor-infiltrating lymphocytes (TILs). We showed that the combination of vaccination with high-dose cyclophosphamide was able to skew the response toward the target antigen and enhanced both the quantity and quality of antigen-specific CD8+ and CD4+ T-cell responses in tumor-bearing mice, which resulted in the inhibition of tumor growth. Furthermore, when tumor-specific antigens were targeted by the vaccine, the combination therapy could actually produce tumor regression, which appeared to result from the high frequency of antigen-specific T cells. These data show that recombinant adenovirus vaccines are compatible with conventional high-dose chemotherapy and that the combined treatment results in improved therapeutic outcomes relative to either agent individually.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bowne WB, Srinivasan R, Wolchok JD, Hawkins WG, Blachere NE, Dyall R et al. Coupling and uncoupling of tumor immunity and autoimmunity. J Exp Med 1999; 190: 1717–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McWilliams JA, McGurran SM, Dow SW, Slansky JE, Kedl RM . A modified tyrosinase-related protein 2 epitope generates high-affinity tumor-specific T cells but does not mediate therapeutic efficacy in an intradermal tumor model. J Immunol 2006; 177: 155–161.

    Article  CAS  PubMed  Google Scholar 

  3. Steitz J, Bruck J, Steinbrink K, Enk A, Knop J, Tuting T . Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int J Cancer 2000; 86: 89–94.

    Article  CAS  PubMed  Google Scholar 

  4. Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 2001; 61: 3689–3697.

    CAS  PubMed  Google Scholar 

  5. Song CK, Han HD, Noh KH, Kang TH, Park YS, Kim JH et al. Chemotherapy enhances CD8(+) T cell-mediated antitumor immunity induced by vaccination with vaccinia virus. Mol Ther 2007; 15: 1558–1563.

    Article  CAS  PubMed  Google Scholar 

  6. Song W, Levy R . Therapeutic vaccination against murine lymphoma by intratumoral injection of naive dendritic cells. Cancer Res 2005; 65: 5958–5964.

    Article  CAS  PubMed  Google Scholar 

  7. Taieb J, Chaput N, Schartz N, Roux S, Novault S, Menard C et al. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 2006; 176: 2722–2729.

    Article  CAS  PubMed  Google Scholar 

  8. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 2002; 110: 185–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma J, Urba WJ, Si L, Wang Y, Fox BA, Hu HM . Anti-tumor T cell response and protective immunity in mice that received sublethal irradiation and immune reconstitution. Eur J Immunol 2003; 33: 2123–2132.

    Article  CAS  PubMed  Google Scholar 

  10. Hu HM, Poehlein CH, Urba WJ, Fox BA . Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res 2002; 62: 3914–3919.

    CAS  PubMed  Google Scholar 

  11. Asavaroengchai W, Kotera Y, Mule JJ . Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc Natl Acad Sci USA 2002; 99: 931–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldrath AW, Bogatzki LY, Bevan MJ . Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 2000; 192: 557–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murali-Krishna K, Ahmed R . Cutting edge: naive T cells masquerading as memory cells. J Immunol 2000; 165: 1733–1737.

    Article  CAS  PubMed  Google Scholar 

  14. Kianizad K, Marshall LA, Grinshtein N, Bernard D, Margl R, Cheng S et al. Elevated frequencies of self-reactive CD8+ T cells following immunization with a xenoantigen are due to the presence of a heteroclitic CD4+ T-cell helper epitope. Cancer Res 2007; 67: 6459–6467.

    Article  CAS  PubMed  Google Scholar 

  15. Lane C, Leitch J, Tan X, Hadjati J, Bramson JL, Wan Y . Vaccination-induced autoimmune vitiligo is a consequence of secondary trauma to the skin. Cancer Res 2004; 64: 1509–1514.

    Article  CAS  PubMed  Google Scholar 

  16. Leitch J, Fraser K, Lane C, Putzu K, Adema GJ, Zhang QJ et al. CTL-dependent and -independent antitumor immunity is determined by the tumor not the vaccine. J Immunol 2004; 172: 5200–5205.

    Article  CAS  PubMed  Google Scholar 

  17. Wan Y, Bramson J, Pilon A, Zhu Q, Gauldie J . Genetically modified dendritic cells prime autoreactive T cells through a pathway independent of CD40L and interleukin 12: implications for cancer vaccines. Cancer Res 2000; 60: 3247–3253.

    CAS  PubMed  Google Scholar 

  18. Bloom MB, Perry-Lalley D, Robbins PF, Li Y, el-Gamil M, Rosenberg SA et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 1997; 185: 453–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parkhurst MR, Fitzgerald EB, Southwood S, Sette A, Rosenberg SA, Kawakami Y . Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res 1998; 58: 4895–4901.

    CAS  PubMed  Google Scholar 

  20. Wang RF, Appella E, Kawakami Y, Kang X, Rosenberg SA . Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996; 184: 2207–2216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grinshtein N, Yang TC, Parsons R, Millar J, Denisova G, Dissanayake D et al. Recombinant adenovirus vaccines can successfully elicit CD8+ T cell immunity under conditions of extreme leukopenia. Mol Ther 2006; 13: 270–279.

    Article  CAS  PubMed  Google Scholar 

  22. De Palma R, Marigo I, Del Galdo F, De Santo C, Serafini P, Cingarlini S et al. Therapeutic effectiveness of recombinant cancer vaccines is associated with a prevalent T-cell receptor alpha usage by melanoma-specific CD8+ T lymphocytes. Cancer Res 2004; 64: 8068–8076.

    Article  CAS  PubMed  Google Scholar 

  23. Perricone MA, Claussen KA, Smith KA, Kaplan JM, Piraino S, Shankara S et al. Immunogene therapy for murine melanoma using recombinant adenoviral vectors expressing melanoma-associated antigens. Mol Ther 2000; 1: 275–284.

    Article  CAS  PubMed  Google Scholar 

  24. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60: 1878–1886.

    CAS  PubMed  Google Scholar 

  25. Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 2005; 102: 16013–16018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prevost-Blondel A, Zimmermann C, Stemmer C, Kulmburg P, Rosenthal FM, Pircher H . Tumor-infiltrating lymphocytes exhibiting high ex vivo cytolytic activity fail to prevent murine melanoma tumor growth in vivo. J Immunol 1998; 161: 2187–2194.

    CAS  PubMed  Google Scholar 

  27. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 2004; 34: 336–344.

    Article  CAS  PubMed  Google Scholar 

  29. Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP et al. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 2005; 201: 1591–1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H . Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005; 105: 2862–2868.

    Article  CAS  PubMed  Google Scholar 

  31. Ibe S, Qin Z, Schuler T, Preiss S, Blankenstein T . Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med 2001; 194: 1549–1559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Proietti E, Greco G, Garrone B, Baccarini S, Mauri C, Venditti M et al. Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J Clin Invest 1998; 101: 429–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schiavoni G, Mattei F, Di Pucchio T, Santini SM, Bracci L, Belardelli F et al. Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 2000; 95: 2024–2030.

    CAS  PubMed  Google Scholar 

  34. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003; 198: 569–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Whiteside TL . Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 2006; 16: 3–15.

    Article  CAS  PubMed  Google Scholar 

  36. Zou W . Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263–274.

    Article  CAS  PubMed  Google Scholar 

  37. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 2005; 102: 9571–9576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 2004; 101: 1969–1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Badovinac VP, Messingham KA, Jabbari A, Haring JS, Harty JT . Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat Med 2005; 11: 748–756.

    Article  CAS  PubMed  Google Scholar 

  40. Appay V, Jandus C, Voelter V, Reynard S, Coupland SE, Rimoldi D et al. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J Immunol 2006; 177: 1670–1678.

    Article  CAS  PubMed  Google Scholar 

  41. Harari A, Bart PA, Stohr W, Tapia G, Garcia M, Medjitna-Rais E et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med 2008; 205: 63–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiss WR, Kumar A, Jiang G, Williams J, Bostick A, Conteh S et al. Protection of rhesus monkeys by a DNA prime/poxvirus boost malaria vaccine depends on optimal DNA priming and inclusion of blood stage antigens. PLoS ONE 2007; 2: e1063.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guyonneau L, Murisier F, Rossier A, Moulin A, Beermann F . Melanocytes and pigmentation are affected in dopachrome tautomerase knockout mice. Mol Cell Biol 2004; 24: 3396–3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ng P, Parks RJ, Cummings DT, Evelegh CM, Graham FL . An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. Hum Gene Ther 2000; 11: 693–699.

    Article  CAS  PubMed  Google Scholar 

  45. Yang TC, Millar J, Groves T, Grinshtein N, Parsons R, Takenaka S et al. The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J Immunol 2006; 176: 200–210.

    Article  CAS  PubMed  Google Scholar 

  46. Yang TC, Millar J, Groves T, Zhou W, Grinshtein N, Parsons R et al. On the role of CD4+ T cells in the CD8+ T-cell response elicited by recombinant adenovirus vaccines. Mol Ther 2007; 15: 997–1006.

    Article  CAS  PubMed  Google Scholar 

  47. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 2003; 281: 65–78.

    Article  CAS  PubMed  Google Scholar 

  48. Coles RM, Mueller SN, Heath WR, Carbone FR, Brooks AG . Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1. J Immunol 2002; 168: 834–838.

    Article  CAS  PubMed  Google Scholar 

  49. Yang TC, Dayball K, Wan YH, Bramson J . Detailed analysis of the CD8+ T-cell response following adenovirus vaccination. J Virol 2003; 77: 13407–13411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Slifka MK, Whitton JL . Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR. Nat Immunol 2001; 2: 711–717.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Carole Evelegh for preparing the viruses used in these experiments. This study was supported by the Ontario Cancer Research Network. YW is a CIHR New Investigator. FB was supported by the Swiss National Science Foundation and the Swiss Cancer League. NG was supported by a research studentship from the National Cancer Institute of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Bramson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinshtein, N., Ventresca, M., Margl, R. et al. High-dose chemotherapy augments the efficacy of recombinant adenovirus vaccines and improves the therapeutic outcome. Cancer Gene Ther 16, 338–350 (2009). https://doi.org/10.1038/cgt.2008.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.89

Keywords

This article is cited by

Search

Quick links