Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The essential role of MEKK3 in TNF-induced NF-κB activation

Abstract

Activation of IκB kinase (IKK) is the key step in stimulation of the transcription factor NF-κB, which regulates many genes in the inflammatory response pathway. The molecular mechanism that underlies IKK activation in response to tumor necrosis factor (TNF) is still unknown. Using mitogen-activated protein kinase kinase kinase 3 (MEKK3)-deficient fibroblast cells, we found that MEKK3 plays a critical role in TNF-induced NF-κB activation. We have shown that MEKK3 is required for IKK activation and functions downstream of receptor-interacting protein (RIP) and TNF receptor– associated factor 2. We have also shown that MEKK3 interacts with RIP and directly phosphorylates IKK. The kinase activity of MEKK3 is pivotal to its function and, therefore, MEKK3 links RIP and IKK in TNF-induced NF-κB activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired NF-κB activation by TNF-α in MEKK3−/− MEFs.
Figure 2: Expression of wild-type Map3k3 in MEKK3−/− MEFS restored TNF-α–mediated NF-κB activation.
Figure 3: MEKK3 acted downstream of TRAF2 and RIP in IKK activation.
Figure 4: MEKK3 protected cells from TNF-α–induced cell death.

Similar content being viewed by others

References

  1. Baeuerle, P. A. & Baltimore, D. NF-κB: ten years after. Cell 87, 13–20 (1996).

    Article  CAS  Google Scholar 

  2. Baldwin, A. S. Jr The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).

    Article  CAS  Google Scholar 

  3. Siebenlist, U., Franzoso, G. & Brown, K. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10, 405–455 (1994).

    Article  CAS  Google Scholar 

  4. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  Google Scholar 

  5. Israel, A. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol. 10, 129–133 (2000).

    Article  CAS  Google Scholar 

  6. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  7. Devin, A. et al. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12, 419–429 (2000).

    Article  CAS  Google Scholar 

  8. Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301–311 (2000).

    Article  CAS  Google Scholar 

  9. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  Google Scholar 

  10. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  Google Scholar 

  11. Ting, A. T., Pimentel-Muinos, F. X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-κB but not Fas/APO-1-initiated apoptosis. EMBO J. 15, 6189–6196 (1996).

    Article  CAS  Google Scholar 

  12. Stanger, B. Z., Leder, P., Lee, T. H., Kim, E. & Seed, B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81, 513–523 (1995).

    Article  CAS  Google Scholar 

  13. Lee, F. S., Peters, R. T., Dang, L. C. & Maniatis, T. MEKK1 activates both IκB kinase α and IκB kinase β. Proc. Natl Acad. Sci. USA 95, 9319–9324 (1998).

    Article  CAS  Google Scholar 

  14. Zhao, Q. & Lee, F. S. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-κB though IκB kinase-α and IκB kinase-β. J. Biol. Chem. 274, 8355–8358 (1999).

    Article  CAS  Google Scholar 

  15. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    Article  CAS  Google Scholar 

  16. Woronicz, J. D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D. V. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278, 866–869 (1997).

    Article  CAS  Google Scholar 

  17. Tojima, Y. et al. NAK is an IκB kinase-activating kinase. Nature 404, 778–782 (2000).

    Article  CAS  Google Scholar 

  18. Yujiri, T. et al. MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-κB activation. Proc. Natl Acad. Sci. USA 97, 7272–7277 (2000).

    Article  CAS  Google Scholar 

  19. Xia, Y. et al. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl Acad. Sci. USA 97, 5243–5248 (2000).

    Article  CAS  Google Scholar 

  20. Yang, J. et al. Mekk3 is essential for early embryonic cardiovascular development. Nature Genet. 24, 309–313 (2000).

    Article  CAS  Google Scholar 

  21. Li, N. & Karin, M. Ionizing radiation and short wavelength UV activate NF-κB though two distinct mechanisms. Proc. Natl Acad. Sci. USA 95, 13012–13017 (1998).

    Article  CAS  Google Scholar 

  22. Bender, K., Gottlicher, M., Whiteside, S., Rahmsdorf, H. J. & Herrlich, P. Sequential DNA damage-independent and -dependent activation of NF-κB by UV. EMBO J. 17, 5170–5181 (1998).

    Article  CAS  Google Scholar 

  23. Yeh, W. C. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715–725 (1997).

    Article  CAS  Google Scholar 

  24. Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274, 782–784 (1996).

    Article  CAS  Google Scholar 

  25. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274, 787–789 (1996).

    Article  CAS  Google Scholar 

  26. Liu, Z. G., Hsu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).

    Article  CAS  Google Scholar 

  27. Wang, C. Y., Mayo, M. W. & Baldwin, A. S. Jr TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    Article  CAS  Google Scholar 

  28. Tanaka, M. et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 10, 421–429 (1999).

    Article  CAS  Google Scholar 

  29. Deacon, K. & Blank, J. L. MEK kinase 3 directly activates MKK6 and MKK7, specific activators of the p38 and c-Jun NH2-terminal kinases. J. Biol. Chem. 274, 16604–16610 (1999).

    Article  CAS  Google Scholar 

  30. DiDonato, J. A., Mercurio, F. & Karin, M. Phosphorylation of IκBα precedes but is not sufficient for its dissociation from NF-κB. Mol. Cell Biol. 15, 1302–1311 (1995).

    Article  CAS  Google Scholar 

  31. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kelliher for the RIP−/− cells, W.-C. Yeh and T. W. Mak for TRAF2−/− cells and G. Sun and M. Boerm for technical help. Partly supported by grants from the Cancer Center Core grant (CA16672), the American Cancer Society (RPG –97-090) and National Institutes of Health (AI44016) (to B. S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-gang Liu or Bing Su.

Supplementary information

Web Figure 1.

NF-κB reporter activation by IL-1 in MEKK3-/- MEFs was impaired. p2xNF-kB-Luc plasmid (1 μg) was transfected into wild-type and MEKK3-/-MEFs. Cells were either untreated (-) or stimulated with 25 ng/ml IL-1 (+) 24 h after transfection. Relative luciferase activity was determined 12 h later. Data are the average of three independent experiments. (GIF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Lin, Y., Guo, Z. et al. The essential role of MEKK3 in TNF-induced NF-κB activation. Nat Immunol 2, 620–624 (2001). https://doi.org/10.1038/89769

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing