Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins

Abstract

Apoptosis-inducing tumor necrosis factor (TNF) family receptors recruit the proforms of caspase family cell death proteases to ligand-receptor complexes through interactions with intracellular adapter proteins. We have found that the GTP-binding protein DAP3 binds directly (with high affinity) to the death domain of TNF-related apoptosis-inducing ligand (TRAIL) receptors, and is required for TRAIL-induced apoptosis. DAP3 also associates with the pro-caspase-8–binding adapter protein Fas-associated death domain (FADD), and links FADD to the TRAIL receptors DR4 and DR5. We have also found that binding of DAP3 to FADD and activation of pro-caspase-8 in an in vitro reconstituted system is GTP-dependent. Elucidation of this mechanism suggests GTP-binding proteins as potential targets for pharmacological intervention in TRAIL-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DAP3 directly binds cytosolic domain of DR4.
Figure 2: Mapping of region in DAP3 required for binding DR4.
Figure 3: DAP3 associates with FADD.
Figure 4: DAP3 is required for recruitment of FADD to TRAIL receptors.
Figure 5: DAP3 modulates apoptosis induction by TRAIL receptors.
Figure 6: DAP3 binds GTP and stimulates activation of pro-caspase-8 in vitro in a GTP-dependent manner.
Figure 7: DAP3 association with FADD is GTP-dependent.

Similar content being viewed by others

References

  1. Nagata, S. Fas-induced apoptosis, and diseases caused by its abnormality. Genes Cells 1, 873–879 (1996).

    Article  CAS  Google Scholar 

  2. Wang, J. & Lenardo, M. J. Molecules involved in cell death and peripheral tolerance. Curr. Opin. Immunol. 9, 818–825 (1997).

    Article  CAS  Google Scholar 

  3. Ashkenazi, A. & Dixit, V. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  Google Scholar 

  4. Griffith, T. S. & Lynch, D. H. TRAIL: a molecule with multiple receptors and control mechanisms. Curr. Opin. Immunol. 10, 559–563 (1998).

    Article  CAS  Google Scholar 

  5. Walczak, H. & Krammer, P. H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res. 256, 58–66 (2000).

    Article  CAS  Google Scholar 

  6. Kaplan, M. J., Ray, D., Mo, R. -R., Yung, R. L. & Richardson, B. C. TRAIL (Apo2 ligand) and TWEAK (Apo3 ligand) mediate CD4+ T cell killing of antigen-presenting macrophages. J. Immunol. 164, 2897–2904 (2000).

    Article  CAS  Google Scholar 

  7. Kayagaki, N. et al. Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: A novel mechanism for the antitumor effects of type I IFNs. J. Exp. Med. 189, 1451–1460 (1999).

    Article  CAS  Google Scholar 

  8. Zamai, L. et al. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J. Exp. Med. 188, 2375–2380 (1998).

    Article  CAS  Google Scholar 

  9. Griffith, T. S. et al. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J. Exp. Med. 189, 1343–1354 (1999).

    Article  CAS  Google Scholar 

  10. Fanger, N. A., Maliszewski, C. R., Schooley, K. & Griffith, T. S. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J. Exp. Med. 190, 1155–1164 (1999).

    Article  CAS  Google Scholar 

  11. Clarke, P. et al. Reovirus-induced apoptosis is mediated by TRAIL. J. Virol. 74, 8135–8139 (2000).

    Article  CAS  Google Scholar 

  12. Vidalain, P. O. et al. Measles virus induces functional TRAIL production by human dendritic cells. J. Virol. 74, 556–559 (2000).

    Article  CAS  Google Scholar 

  13. Sedger, L. M. et al. IFN-γ mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J. Immunol. 163, 920–926 (1999).

    CAS  PubMed  Google Scholar 

  14. Song, K. et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J. Exp. Med. 191, 1095–1103 (2000).

    Article  CAS  Google Scholar 

  15. Marsters, S. A., Pitti, R. A., Sheridan, J. P. & Ashkenazi, A. Control of apoptosis signaling by Apo2 ligand. Rec. Prog. Hor. Res. 54, 225–234 (1999).

    CAS  Google Scholar 

  16. French, L. E. & Tschopp, J. The TRAIL to selective tumor death. Nature Med. 5, 157–163 (1999).

    Article  Google Scholar 

  17. Degli-Esposti, M. To die or not to die - the quest of the TRAIL receptors. J. Leuko. Biol. 65, 535–542 (1999).

    Article  CAS  Google Scholar 

  18. Peter, M. E. The TRAIL DISCussion: it is FADD and caspase-8! Cell Death Differ. 7, 759–760 (2000).

    Article  CAS  Google Scholar 

  19. Wallach, D. et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17, 331–367 (1999).

    Article  CAS  Google Scholar 

  20. Salvesen, G. S. & Dixit, V. M. Caspase activation: the induced-proximity model. Proc. Natl Acad. Sci. USA 96, 10964–10967 (1999).

    Article  CAS  Google Scholar 

  21. Kuang, A. A., Diehl, G. E., Zhang, J. & Winoto, A. FADD is required for DR4- and DR5-mediated apoptosis: lack of TRAIL-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J. Biol. Chem. 275, 25065–25068 (2000).

    Article  CAS  Google Scholar 

  22. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815 (1996).

    Article  CAS  Google Scholar 

  23. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death—inducing signaling complex. Cell 85, 817–827 (1996).

    Article  CAS  Google Scholar 

  24. Schneider, P. et al. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-κB. Immunity 7, 831–836 (1997).

    Article  CAS  Google Scholar 

  25. Walczak, H. et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16, 5386–5397 (1997).

    Article  CAS  Google Scholar 

  26. Kischkel, F. C. et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611–620 (2000).

    Article  CAS  Google Scholar 

  27. Sprick, M. R. et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599–609 (2000).

    Article  CAS  Google Scholar 

  28. Kissil, J. L. et al. Isolation of DAP3, a novel mediator of interferon-y-induced cell death. J. Biol. Chem. 270, 27932–27936 (1995).

    Article  CAS  Google Scholar 

  29. Kissil, J., Cohen, O., Raveh, T. & Kimchi, A. Structure-function analysis of an evolutionary conserved protein, DAP3, which mediates TNF-α and Fas-induced cell death. EMBO J. 18, 353–362 (1999).

    Article  CAS  Google Scholar 

  30. Ni, C.-Z. et al. Molecular basis for CD40 signaling mediated by Traf3. Proc. Natl Acad. Sci. USA 97, 10395–10399 (2000).

    Article  CAS  Google Scholar 

  31. Chinnaiyan, A. M., O'Rourke, K., Tewari, M. & Dixit, V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).

    Article  CAS  Google Scholar 

  32. Zhou, Q. et al. Target protease specificity of the viral serpin CrmA: analysis of five caspases. J. Biol. Chem. 272, 7797–7800 (1997).

    Article  CAS  Google Scholar 

  33. Thornberry, N. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  Google Scholar 

  34. Miyazaki, T. et al. Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 266, 1045–1047 (1994).

    Article  CAS  Google Scholar 

  35. Berglund, H. et al. The three-dimensional solution structure and dynamic properties of the human FADD death domain. J. Mol. Biol. 302, 171–188 (2000).

    Article  CAS  Google Scholar 

  36. Varfolomeeve, E. E., Boldin, M. P., Goncharov, T. M. & Wallach, D. A potential mechanism of “cross-talk” between the p55 tumor necrosis factor receptor and Fas/APO1: Proteins binding to the death domains of the two receptors also bind to each other. J. Exp. Med. 183, 1271–1275 (1996).

    Article  Google Scholar 

  37. Jeong, E. J. et al. The solution structure of FADD death domain. Structural basis of death domain interactions of Fas and FADD. J. Biol. Chem. 274, 16337–16342 (1999).

    Article  CAS  Google Scholar 

  38. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., Litwack, G. & Alnemri, E. S. Molecular ordering of the fas-apoptotic pathway: The fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl Acad. Sci. USA 93, 14486–14491 (1996).

    Article  CAS  Google Scholar 

  39. Hulkko, S., Wakui, H. & Zilliacus, J. The pro-apoptotic protein death-associated protien 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function. Biochem. J. 349, 885–893 (2000).

    Article  CAS  Google Scholar 

  40. Moreno, M. B., Memon, S. A. & Zacharchuk, C. M. Apoptosis signaling pathways in normal T cells: differential activity of Bcl-2 and ICE-family protease inhibitors on glucocorticoid-and Fas-mediated cytotoxicity. J. Immunol. 157, 3845–3849 (1996).

    CAS  PubMed  Google Scholar 

  41. Berger, T. et al. The apoptosis mediator mDAP-3 is a novel member of a conserved family of mitochondrial proteins. J. Cell Sci. 113, 3603–3612 (2000).

    CAS  PubMed  Google Scholar 

  42. Yang, X., Chang, H. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355–1357 (1998).

    Article  CAS  Google Scholar 

  43. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of pro-caspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1, 949–957 (1998).

    Article  CAS  Google Scholar 

  44. Torii, S., Egan, D., Evans, R. & Reed., J. Human daxx regulates fas-induced apoptosis from nuclear pml oncogenic domains (pods). EMBO J. 18, 6037–6049 (1999).

    Article  CAS  Google Scholar 

  45. Estojak, J., Brent, R. & Golemis, E. A. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell Biol. 15, 5820–5829 (1995).

    Article  CAS  Google Scholar 

  46. Schneider, P. et al. Characterization of two receptors for TRAIL. FEBS Lett. 416, 329–334 (1997).

    Article  CAS  Google Scholar 

  47. Matsuzawa, S., Takayama, S., Froesch, B. A., Zapata, J. M. & Reed, J. C. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 17, 2736–2747 (1998).

    Article  CAS  Google Scholar 

  48. Haraguchi, M. et al. APAF-1 independent cell death suppression by Bcl-2. J. Exp. Med. 191, 1709–1720 (2000).

    Article  CAS  Google Scholar 

  49. Cardone, M. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Golemis, R. Brent, D. Buckholtz, S. Torii, S. Matsuzawa, A. Kimchi, J. L. Kissil, J. Tschopp, D. Wallach and V. Dixit for plasmids and G. Salvesen, S. Frisch, T. Mustelin and E. Ruoslahti for helpful comments. Supported by the NIH (GM61694) and Human Frontiers Science Program (LT0407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, T., Reed, J. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat Immunol 2, 493–500 (2001). https://doi.org/10.1038/88684

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing