Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter

Abstract

Potassium channels selectively conduct K+ ions across cell membranes, and use diverse mechanisms to control their gating. We studied ion permeation and gating of an inwardly rectifying K+ channel by individually changing the amide carbonyls of two conserved glycines lining the selectivity filter to ester carbonyls using nonsense suppression. Surprisingly, these backbone mutations do not significantly alter ion selectivity. However, they dramatically change the kinetics of single-channel gating and produce distinct subconductance levels. The mutation at the glycine closer to the inner mouth of the pore also abolishes high-affinity binding of Ba2+ to the channel, indicating the importance of this position in ion stabilization in the selectivity filter. Our results demonstrate that K+ ion selectivity can be retained even with significant reduction of electronegativity in the selectivity filter, and that conformational changes of the filter arising from interactions between permeant ions and the backbone carbonyls contribute directly to channel gating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous gating of single Kir2.1 channels.
Figure 2: Amide-to-ester mutations in the selectivity filter.
Figure 3: Alteration of single-channel gating by the Gly-out mutation.
Figure 4: Alteration of single-channel gating by the Gly-in mutation.
Figure 5: Effect of amide-to-ester mutations on Ba2+ blockage.
Figure 6: Effect of amide-to-ester mutations on Cs+ blockage.

Similar content being viewed by others

References

  1. Hille, B. Ionic Channels of Excitable Membranes 2nd edn. (Sinauer, Sutherland, Massachusetts, 1992).

    Google Scholar 

  2. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  3. Yellen, G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31, 239–295 (1998).

    Article  CAS  Google Scholar 

  4. Holmgren, M., Smith, P. L. & Yellen, G. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating. J. Gen. Physiol. 109, 527–535 (1997).

    Article  CAS  Google Scholar 

  5. Liu, Y., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    Article  Google Scholar 

  6. del Camino, D., Holmgren, M., Liu, Y. & Yellen, G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403, 321–325 (2000).

    Article  CAS  Google Scholar 

  7. Perozo, E., Cortes, D. M. & Cuello, L. G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999).

    Article  CAS  Google Scholar 

  8. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  CAS  Google Scholar 

  9. Isacoff, E. Y., Jan, Y. N. & Jan, L. Y. Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature 353, 86–90 (1991).

    Article  CAS  Google Scholar 

  10. Holmgren, M., Jurman, M. E. & Yellen, G. N-type inactivation and the S4-S5 region of the shaker K+ channel. J. Gen. Physiol. 108, 195–206 (1996).

    Article  CAS  Google Scholar 

  11. Lopez-Barneo, J., Hoshi, T., Heinemann, S. H. & Aldrich, R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1, 61–71 (1993).

    CAS  PubMed  Google Scholar 

  12. Liu, Y., Jurman, M. E. & Yellen, G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859–867 (1996).

    Article  CAS  Google Scholar 

  13. Kiss, L., LoTurco, J. & Korn, S. J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263 (1999).

    Article  CAS  Google Scholar 

  14. Amstrong, C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axon. J. Gen. Physiol. 58, 413–437 (1971).

    Article  Google Scholar 

  15. Swenson, R. P. & Armstrong, C. M. K+ channels close more slowly in the presence of external K+ and Rb+. Nature 291, 427–429 (1981).

    Article  CAS  Google Scholar 

  16. Neyton, J. & Pelleschi, M. Multi-ion occupancy alters gating in high-conductance, Ca2+-activated K+ channels. J. Gen. Physiol. 97, 641–665 (1991).

    Article  CAS  Google Scholar 

  17. Demo, S. D. & Yellen, G. Ion effects on gating of the Ca2+-activated K+ channels correlate with occupancy of the pore. Biophys. J. 61, 639–648 (1992).

    Article  CAS  Google Scholar 

  18. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994).

    Article  CAS  Google Scholar 

  19. Chapman, M. L., VanDongen, H. M. A. & VanDongen, A. M. J. Activation-dependent subconductance levels in the drk1 K+ channel suggest a subunit basis for ion permeation and gating. Biophys. J. 72, 708–719 (1997).

    Article  CAS  Google Scholar 

  20. Zheng, J. & Sigworth, F. J. Selectivity changes during activation of mutant shaker potassium channels. J. Gen. Physiol. 110, 101–117 (1997).

    Article  CAS  Google Scholar 

  21. Zheng, J. & Sigworth, F. J. Intermediate conductances during deactivation of heteromultimeric shaker potassium channels. J. Gen. Physiol. 112, 457–474 (1998).

    Article  CAS  Google Scholar 

  22. Nichols, C. G. & Lopatin, A. N. Inward rectifier potassium channels. Annu. Rev. Physiol. 59, 171–191 (1997).

    Article  CAS  Google Scholar 

  23. Sakmann, B. & Trube, G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J. Physiol. (Lond.) 347, 641–657 (1984).

    Article  CAS  Google Scholar 

  24. Sakmann, B. & Trube, G. Voltage-dependent inactivation of inwardly-rectifying single-channel currents in the guinea-pig heart cell membrane. J. Physiol. (Lond.) 347, 659–683 (1984).

    Article  CAS  Google Scholar 

  25. Choe, H., Sackin, H. & Palmer, L. G. Permeation and gating of an inwardly rectifying potassium channel: evidence for a variable energy well. J. Gen. Physiol. 112, 433–446 (1998).

    Article  CAS  Google Scholar 

  26. Choe, H., Palmer, L. G. & Sackin, H. Structural determinants of gating in inward-rectifier K+ channels. Biophys. J. 76, 1988–2003 (1999).

    Article  CAS  Google Scholar 

  27. Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C. & Schultz, P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244, 182–188 (1989).

    Article  CAS  Google Scholar 

  28. Elllman, J. A., Mendel, D. & Schultz, P. G. Site-specific incorporation of novel backbone structures into proteins. Science 255, 197–200 (1992).

    Article  Google Scholar 

  29. Mendel, D., Cornish, V. W. & Schultz, P. G. Site-directed mutagenesis with an expanded genetic code. Annu. Rev. Biophys. Biomol. Struct. 24, 435–462 (1995).

    Article  CAS  Google Scholar 

  30. Nowak, M. W. et al. Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science 268, 439–442 (1995).

    Article  CAS  Google Scholar 

  31. England, P. M., Zhang, Y., Dougherty, D. A. & Lester, H. A. Backbone mutations in transmembrane domains of a ligand-gated ion channels: Implications for the mechanism of gating. Cell 96, 89–98 (1999).

    Article  CAS  Google Scholar 

  32. Wiberg, K. B. & Laidig, K. E. Barriers to rotation adjacent to double bonds. 3. The C–O barrier in formic acid, methyl formate, acetic acid, and methyl acetate. The origin of ester and amide “resonance”. J. Am. Chem. Soc. 109, 5935–5943 (1987).

    Article  CAS  Google Scholar 

  33. Lu, T., Nguyen, B., Zhang, X.-M. & Yang, J. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron 22, 571–580 (1999).

    Article  CAS  Google Scholar 

  34. Creighton, T. E. H. Proteins: Structures and Molecular Properties 2nd edn. (W. H. Freeman and Company, New York, 1993).

    Google Scholar 

  35. Stanfield, P. R. et al. A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. J. Physiol. (Lond.) 478, 1–6 (1994).

    Article  CAS  Google Scholar 

  36. Lopatin, A. N., Makhina, E. N. & Nichols, C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994).

    Article  CAS  Google Scholar 

  37. Ficker, E., Taglialatela, M., Wible, B. A., Henley, C. M. & Brown, A. M. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266, 1068–1072 (1994).

    Article  CAS  Google Scholar 

  38. Yang, J., Jan, Y. N. & Jan, L. Y. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14, 1047–1054 (1995).

    Article  CAS  Google Scholar 

  39. Jin, W.-L. & Lu, Z. A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37, 13291–13299 (1998).

    Article  CAS  Google Scholar 

  40. Slesinger, P. A. et al. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 16, 321–331 (1996).

    Article  CAS  Google Scholar 

  41. Kofuji, P. et al. Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron 16, 941–952 (1996).

    Article  CAS  Google Scholar 

  42. Silverman, S. K., Kofuji. P., Dougherty, D. A., Davidson, N. & Lester., H. A. A regenerative link in the ionic fluxes through the weaver potassium channel underlies the pathophysiology of the mutation. Proc. Natl. Acad. Sci. USA 93, 15429–15434 (1996).

    Article  CAS  Google Scholar 

  43. Jiang, Y. & MacKinnon, R. The barium site in a potassium channel by X-ray crystallography. J. Gen. Physiol. 115, 269–272 (2000).

    Article  CAS  Google Scholar 

  44. Shieh, R.-C., Chang, J.-C. & Arreola, J. Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes. Biophys. J. 75, 2313–2322 (1998).

    Article  CAS  Google Scholar 

  45. Aqvist, J. & Luzhkov, V. Ion permeation mechanism of the potassium channel. Nature 404, 881–884 (2000).

    Article  CAS  Google Scholar 

  46. Bernèche, S. & Roux, B. Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys. J. 78, 2900–2917 (2000).

    Article  Google Scholar 

  47. Capener, C. E. et al. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys. J. 78, 2929–2942 (2000).

    Article  CAS  Google Scholar 

  48. Shrivastava, I. H. & Sansom, M. S. P. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys. J. 78, 557–570 (2000).

    Article  CAS  Google Scholar 

  49. Khakh, B. S. & Lester, H. A. Dynamic selectivity filters in ion channels. Neuron 23, 653–658 (1999).

    Article  CAS  Google Scholar 

  50. Saks, M. E. et al. An engineered Tetrahymena tRNAGln for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression. J. Biol. Chem. 271, 23169–23175 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V.W. Cornish for her participation in the early stage of this work, S. Siegelbaum and members of his lab for discussions, and S. Siegelbaum and W. Sather for comments on a previous version of the manuscript. We also thank H. Lester and D. Dougherty for the tRNA gene and Z. Lu for a gift of tertiapin. This work was supported by grants from the NIH (J.Y., L.Y. J. and P.G.S.), the NSF (A.Y.T.), the Alfred Sloan Foundation (J.Y.) and the HHMI (L.Y. J. and P.G.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, T., Ting, A., Mainland, J. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat Neurosci 4, 239–246 (2001). https://doi.org/10.1038/85080

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85080

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing