Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stem cell repopulation efficiency but not pool size is governed by p27kip1

Abstract

Sustained blood cell production requires preservation of a quiescent, multipotential stem cell pool that intermittently gives rise to progenitors with robust proliferative potential. The ability of cells to shift from a highly constrained to a vigorously active proliferative state is critical for maintaining stem cells while providing the responsiveness necessary for host defense. The cyclin-dependent kinase inhibitor (CDKI), p21cip1/waf1 (p21) dominates stem cell kinetics. Here we report that another CDKI, p27kip1 (p27), does not affect stem cell number, cell cycling, or self-renewal, but markedly alters progenitor proliferation and pool size. Therefore, distinct CDKIs govern the highly divergent stem and progenitor cell populations. When competitively transplanted, p27-deficient stem cells generate progenitors that eventually dominate blood cell production. Modulating p27 expression in a small number of stem cells may translate into effects on the majority of mature cells, thereby providing a strategy for potentiating the impact of transduced cells in stem cell gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The long-term culture and colony-forming assays demonstrate an unchanged stem cell pool size and an enlarged progenitor pool in the p27−/− mice.
Figure 2: Altered cell cycle profile of progenitor cells, but not stem cells, in the p27−/− marrow.
Figure 3: Treatment with 5-FU in vivo demonstrates more active cell cycling in the progenitor pool, but not in the stem cell pool of the p27−/− mice.
Figure 4: Serial bone marrow transplantation (BMT) demonstrates an unaltered self-renewal of hematopoietic stem cells and an enhanced activity of progenitor cells in the p27−/− transplanted mice.
Figure 5: Competitive repopulation assay demonstrates preferential outgrowth of p27−/− progenitor and mature cells following long-term engraftment.

Similar content being viewed by others

References

  1. Mauch, P., Ferrara, J. & Hellman, S. Stem cell self-renewal considerations in bone marrow transplantation. Bone Marrow Transplant. 4, 601–607 (1989).

    CAS  PubMed  Google Scholar 

  2. Mauch, P. et al. Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 31, 1319–1339 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Gardner, R.V., Astle, C.M. & Harrison, D.E. Hematopoietic precursor cell exhaustion is a cause of proliferative defect in primitive hematopoietic stem cells (PHSC) after chemotherapy. Exp. Hematol. 25, 495–501 (1997).

    CAS  PubMed  Google Scholar 

  4. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21(cip1/waf1). Science 287, 1804–1808 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Polyak, K. et al. p27kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Sherr, C.J. & Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sherr, C.J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Fero, M.L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Asiedu, C., Biggs, J. & Kraft, A.S. Complex regulation of CDK2 during phorbol ester-induced hematopoietic differentiation. Blood 90, 3430–3437 (1997).

    CAS  PubMed  Google Scholar 

  12. Liu, M., Iavarone, A. & Freedman, L.P. Transcriptional activation of the human p21(WAF1/CIP1) gene by retinoic acid receptor. Correlation with retinoid induction of U937 cell differentiation. J. Biol. Chem. 271, 31723–31728 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Kranenburg, O., Scharnhorst, V., Van der Eb, A.J. & Zantema, A. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells. J. Cell. Biol. 131, 227–234 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Coats, S., Flanagan, W.M., Nourse, J. & Roberts, J.M. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272, 877–880 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Rivard, N., L'Allemain, G., Bartek, J. & Pouyssegur, J. Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (G0 state) in fibroblasts. J. Biol. Chem. 271, 18337–18341 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Hengst, L. & Reed, S.I. Translational control of p27Kip1 accumulation during the cell cycle. Science 271, 1861–1864 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Pagano, M. et al. Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27 [see comments]. Science 269, 682–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Levine, E.M., Close, J., Fero, M., Ostrovsky, A. & Reh, T.A. p27(Kip1) regulates cell cycle withdrawal of late multipotent progenitor cells in the mammalian retina. Dev. Biol. 219, 299–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Durand, B., Fero, M.L., Roberts, J.M. & Raff, M.C. p27kip1 alters the response of cells to mitogen and is part of a cell- intrinsic timer that arrests the cell cycle and initiates differentiation. Curr. Biol. 8, 431–440 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Tong, X. & Srour, E.F. TGF-β suppresses cell division of Go CD34+ cells while maintaining primitive hematopoietic potential. Exp. Hematol. 26, 684 (1998).

    Google Scholar 

  21. Taniguchi, T. et al. Expression of p21(Cip1/Waf1/Sdi1) and p27(Kip1) cyclin-dependent kinase inhibitors during human hematopoiesis. Blood 93, 4167–4178 (1999).

    CAS  PubMed  Google Scholar 

  22. Yaroslavskiy, B., Watkins, S., Donnenberg, A.D., Patton, T.J. & Steinman, R.A. Subcellular and cell-cycle expression profiles of CDK-inhibitors in normal differentiating myeloid cells. Blood 93, 2907–2917 (1999).

    CAS  PubMed  Google Scholar 

  23. Dao, M.A., Taylor, N. & Nolta, J.A. Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor beta neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cell. Proc. Natl. Acad. Sci. USA 95, 13006–13011 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ploemacher, R.E., van der Sluijs, J.P., Voerman, J.S. & Brons, N.H. An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 74, 2755–2763 (1989).

    CAS  PubMed  Google Scholar 

  25. Ploemacher, R.E., van der Sluijs, J.P., van Beurden, C.A., Baert, M.R. & Chan, P.L. Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 78, 2527–2533 (1991).

    CAS  PubMed  Google Scholar 

  26. Mantel, C. et al. Involvement of p21cip-1 and p27kip-1 in the molecular mechanisms of steel factor-induced proliferative synergy in vitro and of p21cip-1 in the maintenance of stem/progenitor cells in vivo. Blood 88, 3710–3719 (1996).

    CAS  PubMed  Google Scholar 

  27. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells Science 241, 58–62 (1988). (Published erratum appears in Science 244, 1030, 1989.)

    Article  CAS  PubMed  Google Scholar 

  28. Gothot, A., Pyatt, R., McMahel, J., Rice, S. & Srour, E.F. Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0 /G1 phase of the cell cycle. Blood 90, 4384–4393 (1997).

    CAS  PubMed  Google Scholar 

  29. Lerner, C. & Harrison, D.E. 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp. Hematol. 18, 114–118 (1990).

    CAS  PubMed  Google Scholar 

  30. Berardi, A.C., Wang, A., Levine, J.D., Lopez, P. & Scadden, D.T. Functional isolation and characterization of human hematopoietic stem cells. Science 267, 104–108 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Fadok, V.A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  PubMed  Google Scholar 

  32. Muller, A.M. & Dzierzak, E.A. ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipients. Development 118, 1343–1351 (1993).

    CAS  PubMed  Google Scholar 

  33. Weston, S.A. & Parish, C.R. New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. J. Immunol. Methods 133, 87–97 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Grzegorzewski, K. et al. Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin. J. Exp. Med. 180, 1047–1057 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Harrison, D.E. Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55, 77–81 (1980).

    CAS  PubMed  Google Scholar 

  36. Szilvassy, S.J., Humphries, R.K., Lansdorp, P.M., Eaves, A.C. & Eaves, C.J. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl. Acad. Sci. USA 87, 8736–8740 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shen, H. et al. Intrinsic human immunodeficiency virus type 1 resistance of hematopoietic stem cells despite coreceptor expression. J. Virol. 73, 728–737 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Becker, P.S. et al. Adhesion receptor expression by hematopoietic cell lines and murine progenitors: modulation by cytokines and cell cycle status. Exp. Hematol. 27, 533–541 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Roy, V. & Verfaillie, C.M. Expression and function of cell adhesion molecules on fetal liver, cord blood and bone marrow hematopoietic progenitors: implications for anatomical localization and developmental stage specific regulation of hematopoiesis. Exp. Hematol. 27, 302–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, T. et al. Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells. Proc. Natl. Acad. Sci. USA 93, 13158–13163 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shivdasani, R.A. & Orkin, S.H. The transcriptional control of hematopoiesis [see comments]. Blood 87, 4025–4039 (1996).

    CAS  PubMed  Google Scholar 

  42. Tenen, D.G., Hromas, R., Licht, J.D. & Zhang, D.E. Transcription factors, normal myeloid development, and leukemia. Blood 90, 489–519 (1997).

    CAS  PubMed  Google Scholar 

  43. Testa, U. et al. Expression of growth factor receptors in unilineage differentiation culture of purified hematopoietic progenitors. Blood 88, 3391–3406 (1996).

    CAS  PubMed  Google Scholar 

  44. Carver-Moore, K. et al. Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 88, 803–808 (1996).

    CAS  PubMed  Google Scholar 

  45. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HL 44851, DK 50234, and HL 55718 (D.T.S.), AI07387 and DK02761 (T.C.), the Richard Saltonstall Charitable Foundation (D.T.S.) and the Deutscher Akademischer Austuaschdienst (S.S). The authors thank Andrew Koff (Sloan-Kettering Cancer Center, New York) for p27+/− mice, Youngguang Yang, Nadia Carlesso, and Frederic Preffer for technical assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Cheng or David T. Scadden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, T., Rodrigues, N., Dombkowski, D. et al. Stem cell repopulation efficiency but not pool size is governed by p27kip1. Nat Med 6, 1235–1240 (2000). https://doi.org/10.1038/81335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing