Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutation detection by electrocatalysis at DNA-modified electrodes

Abstract

Detection of mutations and damaged DNA bases is important for the early diagnosis of genetic disease. Here we describe an electrocatalytic method for the detection of single-base mismatches as well as DNA base lesions in fully hybridized duplexes, based on charge transport through DNA films. Gold electrodes modified with preassembled DNA duplexes are used to monitor the electrocatalytic signal of methylene blue, a redox-active DNA intercalator, coupled to [Fe(CN)6]3−. The presence of mismatched or damaged DNA bases substantially diminishes the electrocatalytic signal. Because this assay is not a measure of differential hybridization, all single-base mismatches, including thermodynamically stable GT and GA mismatches, can be detected without stringent hybridization conditions. Furthermore, many common DNA lesions and “hot spot” mutations in the human p53 genome can be distinguished from perfect duplexes. Finally, we have demonstrated the application of this technology in a chip-based format. This system provides a sensitive method for probing the integrity of DNA sequences and a completely new approach to single-base mismatch detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of electrocatalytic reduction of [Fe(CN)6]3− by LB+ at a DNA-modified electrode.
Figure 2: Chronocoulometry at −350 mV of 2.0 mM [Fe(CN)6]3− plus 0.5 μM MB+ (pH 7) at a gold electrode modified with the thiol-terminated sequence SH-5′-AGTACAGTCATCGCG hybridized to a fully base-paired complement (TA) and complements that introduce single-base mismatches.
Figure 3: Chronocoulometry at −350 mV of 2.0 mM [Fe(CN)6]3− plus 0.5 μM MB+ (pH 7) at a gold electrode modified with the thiol-terminated sequence SH-5′-ATGGGCCTCCGGTTC hybridized to a fully base-paired wild-type complement (WT, red) and complements that feature mutations at the boldface C and the underlined C.
Figure 4: Chronocoulometry at −350 mV of 2.0 mM [Fe(CN)6]3− plus 0.5 μM MB+ (pH 7) at a gold electrode modified with the thiol-terminated sequence SH-5′-AGTACAGTCATCGCG hybridized to a fully base-paired complement (TA) and complements that introduce single-base lesions.
Figure 5: Plot of total amount of charge accumulated after 5 s of chronocoulometry at –350 mV of 2.0 mM [Fe(CN)6]3− plus 0.5 μM MB+ (pH 7) at gold electrodes ranging in diameter from 30 μm to 500 μm modified with the thiol-terminated sequence SH-5′-AGTACAGTCATCGCG hybridized to a fully base-paired complement.
Figure 6: Chronocoulometry at −350 mV of 2.0 mM [Fe(CN)6]3− plus 0.5 μM MB+ (pH 7) at a 500 μm gold electrode modified with the thiol-terminated sequence SH-5′-AGTACAGTCATCGCG hybridized either (1) to a fully base-paired complement (TA); (2) to a complement with a single base pair mismatch (CA); or the single stranded monolayer formed by denaturation (ss).

Similar content being viewed by others

References

  1. Schafer, A.J. & Hawkins, J.R. DNA variation and the future of human genetics. Nat. Biotechnol. 16, 33–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Marshall, A. & Hodgson, J. DNA chips: an array of possibilities. Nat. Biotechnol. 16, 27–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Hacia, J.G. Resequencing and mutational analysis using oligonucleotide microarrays. Nat. Genet. 21, 42–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Ramsay, G. DNA chips: State-of-the-art. Nat. Biotechnol. 16, 40–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Kelley, S.O., Holmlin, R.E., Stemp, E.D.A. & Barton, J.K. Photoinduced electron transfer in ethidium-modified DNA duplexes—dependence on distance and base stacking. J. Am. Chem. Soc. 119, 9861–9870 (1997).

    Article  CAS  Google Scholar 

  6. Kelley, S.O. & Barton, J.K. Electron transfer between bases in double helical DNA. Science 283, 375–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Holmlin, R.E., Dandliker, P.J. & Barton, J.K. Charge transfer through the DNA base stack. Angew. Chem. Int. Edn. Engl. 36, 2714–2730 (1997).

    Article  Google Scholar 

  8. Gasper S.M. et al. Three-dimensional structure and reactivity of a photochemical cleavage agent bound to DNA. J. Am. Chem. Soc. 120, 12402–12409 (1998).

    Article  CAS  Google Scholar 

  9. Kelley, S.O., Jackson, N.M., Hill, M.G. & Barton, J.K. Long-range electron transfer through DNA films. Angew. Chem. Int. Edn. Engl. 38, 941–945 (1998).

    Article  Google Scholar 

  10. Kelley, S.O., Boon, E.M., Jackson, N.M., Hill, M.G. & Barton, J.K. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 27, 4830–4837 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kelley, S.O., Jackson, N.M., Barton, J.K. & Hill, M.G. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug. Chem. 8, 31–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Kelley, S.O. et al. Orienting DNA helices on gold using applied electric fields. Langmuir 14, 6781–6784 (1998).

    Article  CAS  Google Scholar 

  13. Ropp, P.A. & Thorp, H.H. Site-selective electron transfer from purines to electrocatalysts: voltammetric detection of a biologically relevant deletion in hybridized DNA duplexes. Chem. Biol. 6, 599–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Kramer, B., Kramer, W. & Fritz, H.J. Different base base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of Escherichia Coli. Cell 38, 879–887 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Hunter, W.N., Leonard, G.A. & Brown, T. Hydrogen-bonding patterns observed in the base pairs of duplex oligonucleotides. ACS Sym. Ser. 682, 77–90 (1998).

    Article  CAS  Google Scholar 

  16. Luxon, B.A. & Gorenstein, D.G. Comparison of X-ray and NMR-determined nucleic acid structures. Methods Enzymol. 261, 45–73 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Forman, J.E. et al. Thermodynamics of duplex formation and mismatch discrimination on photolithographically synthesized oligonucleotide arrays. ACS Sym. Ser. 682, 206–228 (1998).

    Article  CAS  Google Scholar 

  18. Peyret N. et al. Nearest-neighbor thermodynamics and NMR of DNA sequences with internal AA, CC, GG, and TT mismatches. Biochemistry 38, 3468–3477(1999).

    Article  CAS  PubMed  Google Scholar 

  19. SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hainaut, P. et al. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualization tools. Nucleic Acids Res. 26, 205–213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cho, Y.J., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. Crystal structure of a p53 tumor-suppressor DNA complex—understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Ryberg, D. et al. p53 mutations in lung tumors—relationship to putative susceptibility markers for cancer. Cancer Res. 54, 1551–1555 (1994).

    CAS  PubMed  Google Scholar 

  23. Kirby, G.M. et al. Allele-specific PCR analysis of p53 codon 249 AGT transversion in liver tissues from patients with viral hepatitis. Int. J. Cancer 68, 21–25 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Friedberg, E.C., Walker, G.C. & Siede, W. DNA repair and mutagenesis. (ASM Press, Washington, DC; 1995).

    Google Scholar 

  25. Izzotti, A. Detection of modified DNA nucleotides by postlabeling procedures. Toxicol. Methods 8, 175–205 (1998).

    Article  CAS  Google Scholar 

  26. Harrison, J.G. & Balasubramanian, S.A. Convenient synthetic route to oligonucleotide conjugates. Bioorg. Med. Chem. Lett. 7, 1041–1046 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the NIH for financial support (GM61077). We also thank M.J. Fitzsimmons and J.L. Lamb in Device Research at JPL for assistance in the fabrication of the DNA chips.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael G. Hill or Jacqueline K. Barton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boon, E., Ceres, D., Drummond, T. et al. Mutation detection by electrocatalysis at DNA-modified electrodes. Nat Biotechnol 18, 1096–1100 (2000). https://doi.org/10.1038/80301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing