Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles

Abstract

We used neural ensemble recording to examine odor-evoked ensemble patterns in the moth antennal (olfactory) lobe. Different odors are thought to evoke unique spatiotemporal patterns of glomerular activity, but little is known about the population dynamics underlying formation of these patterns. Using a silicon multielectrode array, we observed dynamic network interactions within and between glomeruli. Whereas brief odor pulses repeatedly triggered activity in the same coding ensemble, the temporal pattern of synchronous activity superimposed on the ensemble was neither oscillatory nor odor specific. Rather, synchrony strongly depended on contextual variables such as odor intensity and intermittency. Also, because of emergent inhibitory circuit interactions, odor blends evoked temporal ensemble patterns that could not be predicted from the responses to the individual odorants. Thus even at this early stage of information processing, the timing of odor-evoked neural representations is modulated by key stimulus factors unrelated to the molecular identity of the odor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ensemble recordings show the dynamics of population responses evoked by odor.
Figure 2: Simultaneous recordings from multiple neurons show functional differences even among closely spaced cells in the ensemble.
Figure 3: Different neurons in olfactory glomeruli can be distinguished by their different discharge patterns.
Figure 4: Odor blends evoked network dynamics that could not be predicted from the responses to the individual odors in the blend.
Figure 5: Time course of odor-evoked coactivity within the ensemble.

Similar content being viewed by others

References

  1. Hildebrand, J. G. & Shepherd, G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595– 631 (1997).

    Article  CAS  Google Scholar 

  2. Christensen, T. A. & White, J. in The Neurobiology of Taste and Smell Vol. 2 (eds. Finger, T. E., Silver, W. L. & Restrepo, D.) (Wiley, New York, in press).

  3. Rodrigues, V. Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Brain Res. 453, 299– 307 (1988).

    Article  CAS  Google Scholar 

  4. Joerges, J., Küttner, A., Galizia, G. & Menzel, R. Representations of odours and odour mixtures visualized in the honeybee brain . Nature 387, 285–288 (1997).

    Article  CAS  Google Scholar 

  5. Distler, P. G., Bausenwein, B. & Boeckh, J. Localization of odor-induced neural activity in the antennal lobes of the blowfly Calliphora vicina: a [3H]2-deoxyglucose labeling study. Brain Res. 805, 263– 266 (1998).

    Article  CAS  Google Scholar 

  6. Murlis, J. in Insect Pheromone Research – New Directions (eds. Carde, R. T. & Minks, A. K.) 221–231 (Chapman & Hall, New York, 1997).

    Book  Google Scholar 

  7. Christensen, T. A. & Hildebrand, J. G. Coincident stimulation with pheromone components improves temporal pattern resolution in central olfactory neurons. J. Neurophysiol. 77, 775–781 (1997).

    Article  CAS  Google Scholar 

  8. Hansson, B. S. & Christensen, T. A. in Insect Olfaction (ed. Hansson, B. S.) 125–161 (Springer, Berlin, 1999).

    Google Scholar 

  9. Stopfer, M., Wehr, M., MacLeod, K. & Laurent, G. in Insect Olfaction (ed. Hansson, B. S.) 163–180 (Springer, Berlin, 1999).

    Book  Google Scholar 

  10. Christensen, T. A., Waldrop, B. R., Harrow, I. D. & Hildebrand, J. G. Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J. Comp. Physiol. A 173, 385–399 (1993).

    Article  CAS  Google Scholar 

  11. Nicolelis, M. A. L. Methods for Neural Ensemble Recordings (CRC, New York, 1999).

    Google Scholar 

  12. Heinbockel, T., Christensen, T. A. & Hildebrand, J. G. Temporal tuning of odor responses in pheromone-sensitive projection neurons in the brain of the sphinx moth Manduca sexta. J. Comp. Neurol. 409, 1–12 (1999).

    Article  CAS  Google Scholar 

  13. King, J. R., Christensen, T. A. & Hildebrand, J. G. Response characteristics of an identified, sexually dimorphic olfactory glomerulus. J. Neurosci. 20, 2391–2399 (2000).

    Article  CAS  Google Scholar 

  14. Christensen, T. A. & Hildebrand, J. G. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp. Physiol. A 160, 553–569 (1987).

    Article  CAS  Google Scholar 

  15. Mori, K. & Shepherd, G. M. Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb. Seminars Cell Biol. 5, 65–74 (1994).

    Article  CAS  Google Scholar 

  16. Buonviso, N. & Chaput, M. A. Response similarity to odors in olfactory bulb output cells presumed to be connected to the same glomerulus: electrophysiological study using simultaneous single-unit recordings. J. Neurophysiol. 63, 447–454 (1990).

    Article  CAS  Google Scholar 

  17. Rospars, J. P & Hildebrand, J. G. Anatomical identification of glomeruli in the antennal lobes of the male moth Manduca sexta. Cell Tissue Res. 270, 205–227 (1992).

    Article  CAS  Google Scholar 

  18. Buonviso, N., Chaput, M. A. & Berthommer, F. Temporal pattern analyses in pairs of neighboring mitral cells. J. Neurophysiol. 68, 417– 424 (1992).

    Article  CAS  Google Scholar 

  19. Rieke, F., Warland, D. & de Ruyter van Steveninck, Bialek, W. Spikes: Exploring the Neural Code (MIT Press, Cambridge, Massachusetts, 1997).

    Google Scholar 

  20. Kashiwadani, H., Sasaki, Y. F., Uchida, N. & Mori, K. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J. Neurophysiol. 82, 1786–1792 (1999).

    Article  CAS  Google Scholar 

  21. Gelperin, A. Oscillatory dynamics and information processing in olfactory systems. J. Exp. Biol. 202, 1855–1864 (1999).

    Google Scholar 

  22. Christensen, T. A., Waldrop, B. R. & Hildebrand, J. G. Multitasking in the olfactory system: context-dependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons. J. Neurosci. 18, 5999–6008 (1998).

    Article  CAS  Google Scholar 

  23. Faber, T., Joerges, J. & Menzel, R. Associative learning modifies neural representations of odors in the insect brain. Nat. Neurosci. 2, 74–78 (1999).

    Article  CAS  Google Scholar 

  24. Daly, K. C. & Smith, B. H. Associative olfactory learning in the moth Manduca sexta. J. Exp. Biol. (in press).

  25. Hartlieb, E. Olfactory conditioning in the moth Heliothis virescens. Naturwissenschaften 83, 87–88 (1996).

    CAS  Google Scholar 

  26. Heinbockel, T., Kloppenburg, P. & Hildebrand, J. G. Pheromone-evoked potentials and oscillations in the antennal lobes of the sphinx moth Manduca sexta. J. Comp. Physiol. A. 182, 703–714 (1998).

    Article  CAS  Google Scholar 

  27. Stopfer, M. & Laurent G. Short-term memory in olfactory network dynamics. Nature 402, 664– 668 (1999).

    Article  CAS  Google Scholar 

  28. Aertsen, A. M. H. J., Gerstein, G. L., Habib, M. K. & Palm, G. Dynamics of neuronal firing correlation: modulation of “effective connectivity” . J. Neurophysiol. 61, 900– 917 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to David Anderson and coworkers for providing microprobes and technical support, and we thank Carol Barnes and Bruce McNaughton for advice. We also thank Kevin Daly and Brian Smith for discussions and comments, and Heather Stein and A.A. Osman for technical assistance. Supported by grants and contracts from NIH/NIDCD and DARPA/CBS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Christensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, T., Pawlowski, V., Lei, H. et al. Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles. Nat Neurosci 3, 927–931 (2000). https://doi.org/10.1038/78840

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing