Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed evolution of a stable scaffold for T-cell receptor engineering

Abstract

Here we have constructed a single-chain T-cell receptor (scTCR) scaffold with high stability and soluble expression efficiency by directed evolution and yeast surface display. We evolved scTCRs in parallel for either enhanced resistance to thermal denaturation at 46°C, or improved intracellular processing at 37°C, with essentially equivalent results. This indicates that the efficiency of the consecutive kinetic processes of membrane translocation, protein folding, quality control, and vesicular transport can be well predicted by the single thermodynamic parameter of thermal stability. Selected mutations were recombined to create an scTCR scaffold that was stable for over an hour at 65°C, had solubility of over 4 mg ml−1, and shake-flask expression levels of 7.5 mg l−1, while retaining specific ligand binding to peptide–major histocompatibility complexes (pMHCs) and bacterial superantigen. These properties are comparable to those for stable single-chain antibodies, but are markedly improved over existing scTCR constructs. Availability of this scaffold allows engineering of high-affinity soluble scTCRs as antigen-specific antagonists of cell-mediated immunity. Moreover, yeast displaying the scTCR formed specific conjugates with antigen-presenting cells (APCs), which could allow development of novel cell-to-cell selection strategies for evolving scTCRs with improved binding to various pMHC ligands in situ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening and analysis of yeast-displayed scTCR libraries for enhanced stability or expression at elevated temperatures.
Figure 2: Stability and expression properties of selected scTCR mutants.
Figure 3: Peptide–MHC binding by soluble mutant scTCR.
Figure 4: Formation of specific scTCR-yeast–APC complexes.
Figure 5: Locations of mutations in the LWHI scTCR, shown on the wild-type 2C TCR structure41.

Similar content being viewed by others

References

  1. Soo Hoo, W.F. et al. Characterization of a single-chain T-cell receptor expressed in Escherichia coli. Proc. Natl. Acad. Sci. USA 89, 4759–4763 (1992).

    Article  Google Scholar 

  2. Novotny, J. et al. A soluble single-chain T-cell receptor endowed with antigen-combining properties. Proc. Natl. Acad. Sci. USA 88, 8646–8650 (1991).

    Article  CAS  Google Scholar 

  3. Schodin, B.A., Schlueter, C.J. & Kranz, D.M. Binding properties and solubility of single-chain T cell receptors expressed in E. coli. Mol. Immunol. 33, 819–829 (1996).

    Article  CAS  Google Scholar 

  4. Necker, A. et al. Monoclonal antibodies raised against engineered soluble mouse T cell receptors and specific for Valpha8-, Vbeta2- or Vbeta10-bearing T cells. Eur. J. Immunol. 21, 3035–3040 (1991).

    Article  CAS  Google Scholar 

  5. Eilat, D., Kikuchi, G.E., Coligan, J.E. & Shevach, E.M. Secretion of a soluble, chimeric gamma-delta T-cell receptor-immunoglobulin heterodimer. Proc. Natl. Acad. Sci. USA. 89, 6871–6875 (1992).

    Article  CAS  Google Scholar 

  6. Weidanz, J.A., Card, K.F., Edwards, A., Perlstein, E. & Wong, H.C. Display of functional alphabeta single-chain T-cell receptor molecules on the surface of bacteriophage. J Immunol. Meth. 221, 59–76 (1998).

    Article  CAS  Google Scholar 

  7. Shusta, E.V., Kieke, M.C., Parke, E., Kranz, D.M. & Wittrup, K.D. Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J. Mol. Biol. 292, 949–956 (1999).

    Article  CAS  Google Scholar 

  8. Shimba, N. et al. Comparative thermodynamic analyses of the Fv, Fab* and Fab fragments of anti-dansyl mouse monoclonal antibody. FEBS Lett. 360, 247–250 (1995).

    Article  CAS  Google Scholar 

  9. Webber, K.O., Reiter, Y., Brinkmann, U., Kreitman, R. & Pastan, I. Preparation and characterization of a disulfide-stabilized Fv fragment of the anti-Tac antibody: comparison with its single-chain analog. Mol Immunol. 32, 249–258 (1995).

    Article  CAS  Google Scholar 

  10. Young, N.M., MacKenzie, C.R., Narang, S.A., Oomen, R.P. & Baenziger, J.E. Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulphide bond. FEBS Lett. 377, 135–139 (1995).

    Article  CAS  Google Scholar 

  11. Wülfing, C. & Plückthun, A. Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli, influence of folding catalysts. J. Mol. Biol. 242, 655–669 (1994).

    Article  Google Scholar 

  12. Engel, I., Ottenhoff, T.H. & Klausner, R.D. High-efficiency expression and solubilization of functional T cell antigen receptor heterodimers. Science 256, 1318–1321 (1992).

    Article  CAS  Google Scholar 

  13. Boder, E.T. & Wittrup, K.D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    Article  CAS  Google Scholar 

  14. Kieke, M.C., Cho, B.K., Boder, E.T., Kranz, D.M. & Wittrup, K.D. Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng. 10, 1303–1310 (1997).

    Article  CAS  Google Scholar 

  15. Kieke, M.C. et al. Selection of functional T cell receptor mutants from a yeast surface-display library. Proc. Natl. Acad. Sci. USA 96, 5651–5656 (1999).

    Article  CAS  Google Scholar 

  16. Manning, T.C. et al. Alanine scanning mutagenesis of an alphabeta T cell receptor: mapping the energy of antigen recognition. Immunity 8, 413–425 (1998).

    Article  CAS  Google Scholar 

  17. Clements, J.M., Catlin, G.H., Price, M.J. & Edwards, R.M. Secretion of human epidermal growth factor from Saccharomyces cerevisiae using synthetic leader sequences. Gene 106, 267–271 (1991).

    Article  CAS  Google Scholar 

  18. Parekh, R.N., Shaw, M.R. & Wittrup, K.D. An integrating vector for tunable high copy stable integration into the dispersed Ty δ sites of Saccharomyces cerevisiae. Biotechnol. Prog. 12, 16–21 (1996).

    Article  CAS  Google Scholar 

  19. Shusta, E.V., Raines, R.T., Plückthun, A. & Wittrup, K.D. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat. Biotechnol. 16, 773–777 (1998).

    Article  CAS  Google Scholar 

  20. Redding, K., Holcomb, C. & Fuller, R.S. Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J. Cell Biol. 113, 527–38 (1991).

    Article  CAS  Google Scholar 

  21. Suzuki, C.K., Bonifacino, J.S., Lin, A.Y., Davis, M.M. & Klausner, R.D. Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic reticulum: Ca2+ dependent association with BiP. J. Cell Biol. 114, 189–205 (1991).

    Article  CAS  Google Scholar 

  22. Van Leeuwen, J.E.M. & Kearse, K.P. The related molecular chaperones calnexin and calreticulin differentially associate with nascent T cell antigen receptor proteins within the endoplasmic reticulum. J. Biol. Chem. 41, 25345–25349 (1996).

    Article  Google Scholar 

  23. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996). (Published erratum appears in Science 280, 1821, 1998.)

    Article  CAS  Google Scholar 

  24. Sykulev, Y. et al. High-affinity reactions between antigen-specific T-cell receptors and peptides associated with allogeneic and syngeneic major histocompatibility complex class I proteins. Proc Natl Acad Sci USA 91, 11487–11491 (1994).

    Article  CAS  Google Scholar 

  25. Lebowitz, M.S. et al. Soluble, high-affinity dimers of T-cell receptors and class II major histocompatibility complexes: biochemical probes for analysis and modulation of immune responses. Cell Immunol. 192, 175–184 (1999).

    Article  CAS  Google Scholar 

  26. Reddehase, M.J., Rothbard, J.B. & Koszinowski, U.H. A pentapeptide as minimal antigenic determinant for MHC class I- restricted T lymphocytes. Nature 337, 651–653 (1989).

    Article  CAS  Google Scholar 

  27. Udaka, K., Wiesmuller, K.H., Kienle, S., Jung, G. & Walden, P. Self-MHC-restricted peptides recognized by an alloreactive T lymphocyte clone. J. Immunol. 157, 670–678 (1996).

    CAS  PubMed  Google Scholar 

  28. Fields, B.A. et al. Crystal structure of a T-cell receptor beta-chain complexed with a superantigen (see comments). Nature 384, 188–192 (1996).

    Article  CAS  Google Scholar 

  29. Holler, P.D. et al. In vitro evolution of a T Cell receptor with high affinity for peptide/MHC. Proc. Natl. Acad. Sci. USA 97, 5387–5392 (2000).

    Article  CAS  Google Scholar 

  30. Nieba, L., Honegger, A., Krebber, C. & Plückthun, A. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Prot. Eng. 10, 435–444 (1997).

    Article  CAS  Google Scholar 

  31. Plaksin, D., Polakova, K., McPhie, P. & Margulies, D.H. A three-domain T cell receptor is biologically active and specifically stains cell surface MHC/peptide complexes. J. Immunol. 158, 2218–2227 (1997).

    CAS  PubMed  Google Scholar 

  32. Chung, S., Wucherpfennig, K.W., Friedman, S.M., Hafler, D.A. & Strominger, J.L. Functional three-domain single-chain T-cell receptors. Proc. Natl. Acad. Sci. USA 91, 12654–12658 (1994)..

    Article  CAS  Google Scholar 

  33. Kranz, D.M., Tonegawa, S. & Eisen, H.N. Attachment of an anti-receptor antibody to non-target cells renders them susceptible to lysis by a clone of cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 81, 7922–7926 (1984).

    Article  CAS  Google Scholar 

  34. Gietz, R.D. & Schiestl, R.H. Transforming yeast with DNA. Meth. Mol. Cell. Biol. 5, 255–269 (1996).

    Google Scholar 

  35. Boder, E.T. & Wittrup, K.D. Optimal screening of surface-displayed polypeptide libraries. Biotechnol. Prog. 14, 55–62 (1998).

    Article  CAS  Google Scholar 

  36. Robinson, A.S., Bockhaus, J.A., Voegler, A.C. & Wittrup, K.D. Reduction of BiP levels decreases heterologous protein secretion in Saccharomyces cerevisiae. J. Biol. Chem. 271, 10017–10022 (1996).

    Article  CAS  Google Scholar 

  37. Laboissiere, M.C.A., Sturley, S.L. & Raines, R.T. The essential function of protein disulfide isomerase is to unscramble non-native disulfide bonds. J. Biol. Chem. 47, 28006–28009 (1995).

    Google Scholar 

  38. Tachibana, C. & Stevens, T.H. The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol. Cell Biol. 12, 4601–4611 (1992).

    Article  CAS  Google Scholar 

  39. Scopes, R.K. Measurement of protein by spectrophotometry at 205 nm. Anal. Biochem. 59, 277–282 (1974).

    Article  CAS  Google Scholar 

  40. Alexander, J., Payne, J.A., Murray, R., Frelinger, J.A. & Cresswell, P. Differential transport requirements of HLA and H-2 class I glycoproteins. Immunogenetics 29, 380–388 (1989).

    Article  CAS  Google Scholar 

  41. Garcia, K.C. et al. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Roy Mariuzza and Peter Andersen for the superantigen mutant SEC3/1A4, Sean O'Herrin and Jeff Bluestone for QL9/Ld dimers, and Steve Jameson and Mark Daniels for SIYR/Kb tetramers. This work was funded by NIH GM55757 and NSF BES 95-31407. We would like to acknowledge Dr. Michael Glaser and Jonah Chan for their assistance in performing the fluorescence microscopy, and Gary Durack of the University of Illinois Flow Cytometry Facility for his assistance. Also, special thanks to Dr. Marti Ware for her rosette assay expertise.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David M. Kranz or K.Dane Wittrup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shusta, E., Holler, P., Kieke, M. et al. Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 18, 754–759 (2000). https://doi.org/10.1038/77325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing