Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plzf regulates limb and axial skeletal patterning

Abstract

The promyelocytic leukaemia zinc finger (Plzf) protein (encoded by the gene Zfp145) belongs to the POZ/zinc-finger family of transcription factors. Here we generate Zfp145−/− mice and show that Plzf is essential for patterning of the limb and axial skeleton. Plzf inactivation results in patterning defects affecting all skeletal structures of the limb, including homeotic transformations of anterior skeletal elements into posterior structures. We demonstrate that Plzf acts as a growth-inhibitory and pro-apoptotic factor in the limb bud. The expression of members of the abdominal b (Abdb) Hox gene complex, as well as genes encoding bone morphogenetic proteins (Bmps), is altered in the developing limb of Zfp145−/− mice. Plzf regulates the expression of these genes in the absence of aberrant polarizing activity and independently of known patterning genes. Zfp145−/− mice also exhibit anterior-directed homeotic transformation throughout the axial skeleton with associated alterations in Hox gene expression. Plzf is therefore a mediator of anterior-to-posterior (AP) patterning in both the axial and appendicular skeleton and acts as a regulator of Hox gene expression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of Zfp145.
Figure 2: Autopod skeleton.
Figure 3: Zeugopod skeleton.
Figure 4: Increased proliferation and decreased apoptosis in the hindlimb of Zfp145−/− mice.
Figure 5: Expression of Zfp145 in the hindlimb.
Figure 6: Altered Hox and Bmp gene expression in the hindlimb of Zfp145−/− mice.
Figure 7: Homeotic transformations and patterning defects in the axial skeleton of Zfp145−/− mice.
Figure 8: Expression of Hox genes within prevertebrae (Pv).

Similar content being viewed by others

References

  1. Pearse, R.V. & Tabin, C.J. The molecular ZPA. J. Exp. Zoology 282, 677–690 (1998).

    Article  CAS  Google Scholar 

  2. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Z. et al. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 12, 1161–1167 (1995).

    Article  Google Scholar 

  4. Li, J.Y. et al. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J. Biol. Chem. 272, 22447–22455 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Reid, A. et al. Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood 86, 4544–4552 (1995).

    CAS  PubMed  Google Scholar 

  6. Chang, C.C., Ye, B.H., Chaganti, R.S. & Dalla-Favera, R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl Acad. Sci. USA 93, 6947–6952 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hong, S.H., David, G., Wong, C.W., Dejean, A. & Privalsky, M.L. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor-α (RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 9028–9033 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He, L.-Z. et al. Distinct interactions of PML-RARα and PLZF-RARα with transcriptional co-repressors determine differential responses to retinoic acid in APL. Nature Genet. 18, 126–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Tickle, C. The number of polarizing region cells required to specify additional digits in the developing chick wing. Nature 289, 295–298 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Riddle, R.D., Johnson, E.L. & Tabin, C. Sonic Hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Morgan, B.A., Izpisua-Belmonte, J.C., Duboule, D. & Tabin, C.J. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358, 236–239 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Goff, D.J. & Tabin, C.J. Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth. Development 124, 627–636 (1997).

    CAS  PubMed  Google Scholar 

  13. Knezevic, V. et al. Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic hedgehog in a positive feedback loop. Development 124, 4523–4536 (1997).

    CAS  PubMed  Google Scholar 

  14. Small, K.M. & Potter, S.S. Homeotic transformations and limb defects in HoxA11 mutant mice. Genes Dev. 7, 2318–2328 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Yokouchi, Y. et al. Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Genes Dev. 9, 2509–2522 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Fromental-Ramin, C. et al. Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122, 2997–3011 (1996).

    Google Scholar 

  17. Davis, A.P., Witte, D.P., Hsieh-Li, H.M., Potter, S.S. & Capecchi, M.R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–795 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Zou, H. & Niswander, L. Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272, 738–741 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Pollack, R.A., Jay, G. & Bieberich, C.J. Altering the boundaries of Hox3.1 expression: evidence for antipodal gene expression. Cell 71, 911–923 (1992).

    Article  Google Scholar 

  20. Jegalian, B.G. & Robertis, E.M. Homeotic transformations in the mouse induced by overexpression of a human Hox3.3 transgene. Cell 71, 901–910 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Avantaggiato, V. et al. Developmental analysis of murine promyelocyte leukemia zinc finger (PLZF) gene expression: implications for the neuromeric model of the forebrain organization. J. Neurosci. 15, 4927–4942 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, G. et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9, 2808–2820 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Dudley, A.T., Lyons, K.M. & Robertson, E.J.A. Requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9, 2795–2807 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Hoatlin, M.E. et al. A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood 94, 3737–3747 (1999).

    CAS  PubMed  Google Scholar 

  25. Davis, J.M. et al. Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene. Oncogene 18, 365–375 (1999).

    Article  Google Scholar 

  26. He, L.Z., Merghoub, T. & Pandolfi, P.P. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene 18, 5278–5292 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Bhatia, M. et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med. 189, 1139–1148 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Oostveen, J., Bijl, J., Raaphorst, F., Walboomers, J. & Meijer, C. The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 13, 1675–1690 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Ruthardt, M. et al. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor α (RAR α) and PLZF-RAR α fusion proteins on retinoic acid signalling. Mol. Cell. Biol. 17, 4859–4869 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kessel, M. & Gruss, P. Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes by retinoic acid. Cell 67, 89–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Wilkinson, D.G. Whole-mount in situ hybridization of vertebrate embryo. in In Situ hybridization: A Practical Approach (ed. Wilkinson, D.G.) 75–83 (IRL, Oxford, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank D. Ruggero and S. Pizette for discussions; M. Branford and C. Kaduro for help with experiments; J.H. Dong and V. Soares for help with the generation and the management of the Zfp145 mutants; N. Lampin and B. Gumbiner for help and advice with the electron scanning microscopy analysis; D. Duboule and P. Gruss for Hoxd and Hoxa probes, respectively; M. Scott and A. Joyner for Ptch and Gli probes, respectively; M. Capecchi and A. Boulet for Hoxc6 and Hoxc8 probes; and P.G. Pelicci and M. Ruthardt for a PLZF antibody and probe. P.P.P. is a Scholar of the Leukemia and Lymphoma Society (formerly known as the Leukemia Society of America). L.N. is an Assistant Investigator of the Howard Hughes Medical Institute. This work was supported by the NIH (CA-08748 and CA-71692 awarded to Sloan-Kettering Institute and P.P.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barna, M., Hawe, N., Niswander, L. et al. Plzf regulates limb and axial skeletal patterning. Nat Genet 25, 166–172 (2000). https://doi.org/10.1038/76014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing