Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A common polymorphism acts as an intragenic modifier of mutant p53 behaviour

Abstract

The p73 protein, a homologue of the tumour-suppressor protein p53, can activate p53-responsive promoters and induce apoptosis in p53-deficient cells. Here we report that some tumour-derived p53 mutants can bind to and inactivate p73. The binding of such mutants is influenced by whether TP53 (encoding p53) codon 72, by virtue of a common polymorphism in the human population, encodes Arg or Pro. The ability of mutant p53 to bind p73, neutralize p73-induced apoptosis and transform cells in cooperation with EJ-Ras was enhanced when codon 72 encoded Arg. We found that the Arg-containing allele was preferentially mutated and retained in squamous cell tumours arising in Arg/Pro germline heterozygotes. Thus, inactivation of p53 family members may contribute to the biological properties of a subset of p53 mutants, and a polymorphic residue within p53 affects mutant behaviour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of a p53 mutant to p73α.
Figure 2: A p53 mutant blocks DNA binding and transactivation by p73.
Figure 3: Binding of mutant p53 to p73 under physiological conditions.
Figure 4: Heteroligomerization of p73 with conformational p53 mutants governed by TP53 codon 72 R/P polymorphism.
Figure 5: p73-mediated growth suppression of SAOS2 cells is blocked by p53 mutants that bind to p73.

Similar content being viewed by others

References

  1. Kaelin, W.G. The emerging p53 gene family. J. Natl Cancer Inst. 91, 594–598 (1999).

    Article  CAS  Google Scholar 

  2. Mateu, M. & Ferssht, A. Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerizaton. Proc. Natl Acad. Sci. USA 96, 3595–3599 (1999).

    Article  CAS  Google Scholar 

  3. Marin, M.C., Jost, C., DeCaprio, J.A., Caput, D. & Kaelin, W.G. Viral oncoproteins discriminate between p53 and the p53 homolog p73. Mol. Cell. Biol. 18, 6316– 6324 (1998).

    Article  CAS  Google Scholar 

  4. Kaghad, M. et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90, 809–819 ( 1997).

    Article  CAS  Google Scholar 

  5. De Laurenzi, V. et al. Two new p73 splice variants, γ and δ, with different transcriptional activity. J. Exp. Med. 188, 1763–1768 (1998).

    Article  CAS  Google Scholar 

  6. Davison, T. et al. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem. 274, 18709–18714 (1999).

    Article  CAS  Google Scholar 

  7. Levine, A. et al. The spectrum of mutations at the p53 locus. Ann. NY Acad. Sci. 768, 111–128 (1995).

    Article  CAS  Google Scholar 

  8. Harris, N. et al. Molecular basis for heterogeneity of the human p53 protein. Mol. Cell. Biol. 6, 4650–4656 (1986).

    Article  CAS  Google Scholar 

  9. Zambetti, G.R. & Levine, A.J. A comparison of the biological activities of wild-type and mutant p53. FASEB J. 7, 855–865 (1993).

    Article  CAS  Google Scholar 

  10. Orfy, K., Legros, Y., Auguin, C. & Soussi, T. Analysis of the most representative tumor-derived p53 mutants reveals changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation . EMBO J. 13, 3496–3504 (1994).

    Article  Google Scholar 

  11. Yang, A. et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death inducing, and dominant-negative activities. Mol. Cell 2, 305–316 ( 1998).

    Article  CAS  Google Scholar 

  12. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–708 (1999).

    Article  CAS  Google Scholar 

  13. Mills, A.A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis . Nature 398, 708–713 (1999).

    Article  CAS  Google Scholar 

  14. Jost, C., Marin, M. & Kaelin, W.G. p73 is a human p53-related protein that can induce apoptosis . Nature 389, 191–194 (1997).

    Article  CAS  Google Scholar 

  15. Kovalev, S., Marchenko, N., Swendemann, S., LaQuaglia, M. & Moll, U.M. Expression level, allelic origin and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines . Cell. Growth Differ. 9, 897– 903 (1998).

    CAS  PubMed  Google Scholar 

  16. Brash, D. et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl Acad. Sci. USA 88, 10124–10128 (1991).

    Article  CAS  Google Scholar 

  17. McGregor, J. et al. p53 mutations implicate sunlight in post-transplant skin cancer irrespective of human papillomavirus status. Oncogene 14, 1737–1740 (1997).

    Article  Google Scholar 

  18. Brachman, D.G. et al. Occurrence of p53 gene deletions and human papilloma virus infection in human head and neck cancer. Cancer Res. 52, 4832–4836 (1992).

    CAS  PubMed  Google Scholar 

  19. Di Como, C., Gaiddon, C. & Prives, C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell. Biol. 19, 1438–1449 (1999).

    Article  CAS  Google Scholar 

  20. Hollstein, M.K. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551– 3555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dittmer, D. et al. Gain of function mutations in p53. Nature Genet . 4, 42–46 ( 1993).

    Article  CAS  Google Scholar 

  22. Shaulsky, G., Goldfinger, N. & Rotter, V. Alterations in tumor development in vivo mediated by expression of wild type or mutant p53 proteins. Cancer Res. 51, 5232–5237 (1991).

    CAS  PubMed  Google Scholar 

  23. Halevy, O., Michalovitz, D. & Oren, M. Different tumor-derived p53 mutants exhibit distinct biological activities. Science 250, 113– 116 (1990).

    Article  CAS  Google Scholar 

  24. Li, R. et al. Mutant p53 protein expression interferes with p53-independent apoptotic pathways. Oncogene 16, 3269– 3277 (1998).

    Article  CAS  Google Scholar 

  25. Blandino, G., Levine, A. & Oren, M. Mutant p53 gain of function: differential effects of different p53 mutants on resistence of cultured cells to chemotherapy. Oncogene 2, 477–485 ( 1999).

    Article  Google Scholar 

  26. Gong, J. et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399, 806–809 (1999).

    Article  CAS  Google Scholar 

  27. Sakamuro, D., Sabbatini, P., White, E. & Prendergast, G.C. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15, 887–898 ( 1997).

    Article  CAS  Google Scholar 

  28. Walker, K. & Levine, A. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl Acad. Sci. USA 93, 15335–15340 (1996).

    Article  CAS  Google Scholar 

  29. Murata, M. et al. Analysis of a germ line polymorphism of the p53 gene in lung cancer patients; discrete results with smoking history. Carcinogenesis 17, 261–264 ( 1996).

    Article  CAS  Google Scholar 

  30. Weston, A. et al. Determination of the allelic frequencies of an L-myc and a p53 polymorphism in human lung cancer. Carcinogenesis 15, 583–587 (1994).

    Article  CAS  Google Scholar 

  31. Jin, X. et al. Higher lung cancer risk for younger African-Americans with the Pro/Pro p53 genotype. Carcinogenesis 16, 2205–2208 (1995).

    Article  CAS  Google Scholar 

  32. Birgander, R. et al. p53 polymorphisms and haplotypes in lung cancer. Carcinogenesis 16, 2233–2236 (1995).

    Article  CAS  Google Scholar 

  33. Kawajiri, K., Nakachi, K., Imai, K., Watanabe, J. & Hayashi, S.-I. Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer. Carcinogenesis 14, 1085–1089 (1993).

    Article  CAS  Google Scholar 

  34. Zhang, W., Hu, G. & Deisseroth, A. Polymorphism at codon 72 of the p53 gene in human acute myelogenous leukemia. Gene 117, 271– 275 (1992).

    Article  CAS  Google Scholar 

  35. Rosenthal, A. et al. p53 codon 72 polymorphism and risk of cervical cancer in UK . Lancet 352, 871–872 (1998).

    Article  CAS  Google Scholar 

  36. Minaguchi, T. et al. No evidence of correlation between polymorphism at codon 72 of p53 and risk of cervical cancer in Japanese patients with human papillomavirus 16/18 infection. Cancer Res. 20, 4585– 4586 (1998).

    Google Scholar 

  37. Hildesheim, A. et al. p53 polymorphism and risk of cervical cancer. Nature 396, 531–532 ( 1998).

    Article  CAS  Google Scholar 

  38. Helland, A. et al. p53 polymorphism and risk of cervical cancer. Nature 396, 530–531 ( 1998).

    Article  CAS  Google Scholar 

  39. Josefsson, A. et al. p53 polymorphism and risk of cervical cancer. Nature 396, 531 (1998).

    Article  CAS  Google Scholar 

  40. Lanham, S., Campbell, I., Watt, P. & Gornall, R. p53 polymorphism and risk of cervical cancer. Lancet 352, 1631 (1998).

    Article  CAS  Google Scholar 

  41. Storey, A. et al. p53 polymorphism and risk of cervical cancer. Nature 396, 532 (1998).

    Article  CAS  Google Scholar 

  42. Beckman, G. et al. Is p53 polymorphism maintained by natural selection. Hum. Hered. 44, 266–270 (1994).

    Article  CAS  Google Scholar 

  43. Baker, S.J., Markowitz, S., Fearon, E., Willson, B. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249 , 912–915 (1990).

    Article  CAS  Google Scholar 

  44. Hinds, P.W. et al. Mutant p53 cDNAs from human colorectal carcinomas can cooperate with ras in transformation of primary rate cells. Cell Growth Differ . 1, 571–580 ( 1990).

    CAS  PubMed  Google Scholar 

  45. Crook, T., Marston, N., Sara, E. & Vousden, K. Transcriptional activation by p53 correlates with suppression of growth but not transformation . Cell 79, 817–827 (1994).

    Article  CAS  Google Scholar 

  46. Unger, T., Mietz, J., Scheffner, M., Yee, C. & Howley, P. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression. Mol. Cell. Biol. 13, 5186–5194 (1993).

    Article  CAS  Google Scholar 

  47. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 ( 1993).

    Article  CAS  Google Scholar 

  48. Nigro, J.M. et al. Mutations in the p53 gene occur in diverse human tumour types . Nature 342, 705–708 (1989).

    Article  CAS  Google Scholar 

  49. Jones, M. & Nakamura, Y. Detection of loss of heterozygosity at the human TP53 locus using a dinucleotide repeat polymorphism. Genes Chromosomes Cancer 1, 89–90 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Brash, C. Maki and members of the Kaelin and Crook Laboratory for useful discussions; C. DiComo and C. Prives for sharing their data before publication; A. Fernandez for support and discussions; and L. Billingham and D. Moffit for statistical advice. M.C.M. is funded by an NIH training grant to D.F.C.I., L.A.B. is funded by the Medical Research Coucil, J.O. by the Leukemia Research Fund, M.S.I. is funded by American Cancer Society and I.G.Y. by British Council in Turkey. T.C. is supported by the Leopold Muller Trust and W.G.K. is a Howard Hughes Medical Institute assistant investigator. This work was sponsored in part by the National Cancer Institute, DHHS, under contract with ABL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Kaelin Jr.

Additional information

Howard Hughes Medical Institute

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin, M., Jost, C., Brooks, L. et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 25, 47–54 (2000). https://doi.org/10.1038/75586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing