Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The neural mechanisms of top-down attentional control

Abstract

Selective visual attention involves dynamic interplay between attentional control systems and sensory brain structures. We used event-related functional magnetic resonance imaging (fMRI) during a cued spatial-attention task to dissociate brain activity related to attentional control from that related to selective processing of target stimuli. Distinct networks were engaged by attention-directing cues versus subsequent targets. Superior frontal, inferior parietal and superior temporal cortex were selectively activated by cues, indicating that these structures are part of a network for voluntary attentional control. This control biased activity in multiple visual cortical areas, resulting in selective sensory processing of relevant visual targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimuli and timing.
Figure 2: Activity related to attentional control.
Figure 3: Activity related to target processing.
Figure 4: Significant differences between cue and target processing.
Figure 5: Selective processing of target stimuli and retinotopy (single subject).
Figure 6: Selective attention-related activations to targets and cues (group data).

Similar content being viewed by others

References

  1. Pashler, H. The Psychology of Attention (MIT Press, Cambridge, Massachusetts, 1999).

  2. Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25 –42 (1990).

    Article  CAS  Google Scholar 

  3. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  Google Scholar 

  4. Mangun, G. R. & Hillyard, S. A. Modulation of sensory-evoked brain potentials provide evidence for changes in perceptual processing during visual-spatial priming. J. Exp. Psychol. Hum. Percept. Perform. 17, 1057–1074 ( 1991).

    Article  CAS  Google Scholar 

  5. Mesulam, M.-M A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–325 (1981).

    Article  CAS  Google Scholar 

  6. Posner, M. I., Walker, J. A., Friedrich, F. A. & Rafal, R. D. Effects of parietal injury on covert orienting of attention. J. Neurosci. 4, 1863–1874 ( 1984).

    Article  CAS  Google Scholar 

  7. Corbetta, M., Miezin, F., Shulman, G. & Petersen, S. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993).

    Article  CAS  Google Scholar 

  8. Gitelman, D. R. et al. A large-scale distributed network for covert spatial attention . Brain 122, 1093–1106 (1999).

    Article  Google Scholar 

  9. Heinze, H. J. et al. Combined spatial and temporal imaging of spatial selective attention in humans. Nature 392, 543– 546 (1994).

    Article  Google Scholar 

  10. Martinez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat. Neurosci. 2, 364–369 (1999).

    Article  CAS  Google Scholar 

  11. Nobre, A. C. et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120, 515–533 (1997).

    Article  Google Scholar 

  12. Harter, M. R., Miller, S. L., Price, N. J., LaLonde, M. E. & Keyes, A. L. Neural processes involved in directing attention. J. Cogn. Neurosci. 1, 223– 237 (1989).

    Article  CAS  Google Scholar 

  13. Buckner, R. et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 14302– 14303 (1996).

    Article  Google Scholar 

  14. McCarthy, G., Luby, M., Gore, J. & Goldman-Rakic, P. Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. J. Neurophysiol. 77, 1630–1634 (1997).

    Article  CAS  Google Scholar 

  15. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 89, 5951–5955 ( 1992).

    Article  CAS  Google Scholar 

  16. Mangun, G. R., Hopfinger, J., Kussmaul, C., Fletcher, E. & Heinze, H. J. Covariations in ERP and PET measures of spatial selective attention in human extrastriate cortex. Hum. Brain Mapp. 5, 273–279 ( 1997).

    Article  CAS  Google Scholar 

  17. Mangun, G. R., Buonocore, M., Girelli, M. & Jha, A. ERP and fMRI measures of visual spatial selective attention. Hum. Brain Mapp. 6, 383–389 ( 1998).

    Article  CAS  Google Scholar 

  18. Tootell, R. B. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 ( 1998).

    Article  CAS  Google Scholar 

  19. Brefczynski, J. A. & DeYoe, E. A. A physiological correlate of the spotlight of visual attention. Nat. Neurosci. 2, 370–374 ( 1999).

    Article  CAS  Google Scholar 

  20. Engel, S. A., Glover, G. H. & Wandell, B. A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

  21. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  22. Woldorff, M. et al. Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Hum. Brain Mapp. 5, 280–286 (1997).

    Article  CAS  Google Scholar 

  23. Treue, S. & Maunsell, J. H. R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  24. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron, 21, 761– 773 (1998).

    Article  CAS  Google Scholar 

  25. Coull, J. T. & Nobre, A. C. Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 18, 7426–7435 (1998).

    Article  CAS  Google Scholar 

  26. Bushnell, M. C., Goldberg, M. E. & Robinson, D. L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 46, 755 –772 (1981).

    Article  CAS  Google Scholar 

  27. LaBar, K. S., Gitelman, D. R., Parrish, T. B. & Mesulam, M. -M. Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. Neuroimage 10, 695–704 (1999).

    Article  CAS  Google Scholar 

  28. Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proc. Natl. Acad. Sci. USA 95, 831– 838 (1998).

    Article  CAS  Google Scholar 

  29. Friedrich, F. J., Egly, R., Rafal, R. & Beck, D. Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. Neuropsychology 12, 193 –207 (1998).

    Article  CAS  Google Scholar 

  30. Watson, R. T., Valenstein, E., Day, A. & Heilman, K. M. Posterior neocortical systems subserving awareness and neglect. Arch. Neurol. 51, 1014–1021 (1994).

    Article  CAS  Google Scholar 

  31. Henik, A., Rafal, R. & Rhodes, D. Endogenously generated and visually guided saccades after lesions of the human frontal eye fields. J. Cogn. Neurosci. 6, 400–411 (1984).

    Article  Google Scholar 

  32. Rosen, A. C. et al. Neural basis of endogenous and exogenous spatial orienting: a functional MRI study. J. Cogn. Neurosci. 11, 135–152 (1999).

    Article  CAS  Google Scholar 

  33. Petit, L. et al. PET study of the human foveal fixation system. Hum. Brain. Mapp. 8, 28–43 ( 1999).

    Article  CAS  Google Scholar 

  34. Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 ( 1993).

    Article  CAS  Google Scholar 

  35. Kojima, S. & Goldman-Rakic, P. S. Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res. 248, 43–50 ( 1982).

    Article  CAS  Google Scholar 

  36. D'Esposito, M., Ballard, D., Aguirre, G. K. & Zarahn, E. Human prefrontal cortex is not specific for working memory: a functional MRI study. Neuroimage 8, 274– 282 (1998).

    Article  CAS  Google Scholar 

  37. Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A. & Reuter-Lorenz, P. A. Inhibition in verbal working memory revealed by brain activation. Proc. Natl. Acad. Sci. USA 95, 8410–8413 ( 1998).

    Article  CAS  Google Scholar 

  38. Smith, E. E. & Jonides, J. Neuroimaging analyses of human working memory. Proc. Natl. Acad. Sci. USA 95, 12061 –12068 (1998).

    Article  CAS  Google Scholar 

  39. Corbetta, M. in The Attentive Brain (ed. Parasuraman, R.) 95– 122 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  40. Posner, M. I. & DiGirolamo, G. J. in The Attentive Brain (ed. Parasuraman, R.) 401–423 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  41. Luck, S. J. et al. Effects of spatial cuing on luminance detectability: Psychophysical and electrophysiological evidence for early selection. J. Exp. Psychol. Hum. Percept. Perform. 20, 887– 904 (1994).

    Article  CAS  Google Scholar 

  42. Van Voorhis, S. T. & Hillyard, S. A. Visual evoked potentials and selective attention to points in space. Percept. Psychophys. 22, 54–62 ( 1977).

    Article  Google Scholar 

  43. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431– 441 (1999).

    Article  CAS  Google Scholar 

  44. Tootell, R. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  45. Luck, S. J., Chelazzi, L. Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2 and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  46. Chawla, D., Rees, G. & Friston, K. J. The physiological basis of attentional modulation in extrastriate visual areas. Nat. Neurosci. 7, 671–676 (1999).

    Article  Google Scholar 

  47. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human cerebral cortex during directed attention in the absence of visual stimulation . Neuron 22, 751–761 (1999).

    Article  CAS  Google Scholar 

  48. Buonocore, M. H. & Gao, L. Ghost artifact reduction for echo planar imaging using image phase correction. Magn. Reson. Med. 38, 89–100 ( 1997).

    Article  CAS  Google Scholar 

  49. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

  50. Friston, K. J. et al. Event-related fMRI: Characterizing differential responses . Neuroimage 7, 30–40 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Institute of Mental Health (MH55714 and MH57138) and Human Frontier Science Program to G.R.M., and a National Science Foundation fellowship to J.B.H. We thank Neva Corrigan for assistance in collecting the MRI data, Jeff Maxwell for assistance in collecting the EOG data, Karl Friston and Christian Buechel for advice regarding the event-related fMRI analyses and Kevin LaBar, Kevin Wilson, Barry Geisbrecht, Marty Woldorff, Daniel Weissman, Steven Hillyard and Tamara Swaab for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Mangun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopfinger, J., Buonocore, M. & Mangun, G. The neural mechanisms of top-down attentional control. Nat Neurosci 3, 284–291 (2000). https://doi.org/10.1038/72999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing