Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Strategies for bioengineering the development and metabolism of glandular tissues in plants

Abstract

Glandular tissues in plants produce a wide variety of commercially important chemicals. We review specific model systems that can be exploited for bioengineering the development and metabolism of these specialized structures, and the economic considerations that must be satisfied to permit commercially viable bioengineering approaches to specific chemicals and that constrain the choice of production systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative examples of chemicals produced by glandular tissues in plants.
Figure 2: Examples of nonglandular and glandular structures in plants.

Similar content being viewed by others

References

  1. Kelsey, R.G., Reynolds, G.W., and Rodriguez, E. 1984. The chemistry of biologically active constituents secreted and stored in plant glandular trichomes, pp. 187–241, in Biology and chemistry of plant trichomes , Rodriguez, E., Healy, P.L., Mehta, I. (eds.). Plenum Press, New York.

    Book  Google Scholar 

  2. Fahn, A. 1979. Secretory tissues in plants. Academic Press, London.

    Google Scholar 

  3. Vogel, S. 1990. The role of scent glands in pollination. Amerind Publishing Co, New Delhi, India.

    Google Scholar 

  4. Ohloff, G. 1994. Scent and fragrances. Springer–Verlag, New York.

    Book  Google Scholar 

  5. Zinkel, D.F. and Russell, J. 1989. Naval stores. Production, chemistry, utilization. Pulp Chemicals Association, New York.

    Google Scholar 

  6. Uphof, J.C.T., Hummel, K., and Staesche, K. 1962. Plant hairs. Gebrüder Borntraeger, Berlin, Germany.

    Google Scholar 

  7. Stitt, M. and Sonnewald, U. 1995. Regulation of metabolism in transgenic plants. Ann. Rev. Plant Physiol., Plant Mol. Biol. 46: 341–368.

    Article  Google Scholar 

  8. Sévenier, R., Hall, R.D., van der Meer, I.M., Hakkert, H.J.C., van Tunen, A.J., and Koops, A.J. 1998. High level fructan accumulation in a transgenic sugar beet. Nat. Biotechnol. 16: 843–846.

    Article  Google Scholar 

  9. Kridl, J.C. and Shewmaker, C.K. 1996. Food for thought: Improvement of food quality and composition through genetic engineering, pp. 1–12 in Engineering plants for commercial products and applications, Collins, G.B. and Shepherd, R.J. (eds.). New York Academy of Sciences, New York.

    Google Scholar 

  10. McCaskill, D. and Croteau, R. 1998. Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol. 16: 349–355.

    Article  Google Scholar 

  11. Ramos–Valdivia, A.C., van der Heijden, R., and Verpoorte, R. 1997. Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat. Prod. Rep. 14: 591– 603.

    Article  Google Scholar 

  12. McCaskill, D. and Croteau, R. 1997.Prospects for the bioengineering of isoprenoid biosynthesis, pp. 107– 146, in Advances in biochemical engineering/biotechnology, Berger, R. (eds.). Springer–Verlag, Berlin, Germany.

    Google Scholar 

  13. Lichtenthaler, H.K., Rohmer, M., and Schwender, J. 1997. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101: 643– 652.

    Article  Google Scholar 

  14. Bohlmann, J., Meyer–Gauen, G., and Croteau, R. 1998. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. USA 95: 4126–4133.

    Article  Google Scholar 

  15. Wendt, K.U. and Schulz, G.E. 1998. Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure 6: 127–133.

    Article  Google Scholar 

  16. Cuppett, S.L. and Hall III, C.A. 1998 . Antioxidant activity of the Labiatae, pp. 245– 271, in Advances in food and nutrition research. Taylor, S.L. (ed.). Academic Press, New York.

    Google Scholar 

  17. 1998. Chemical market reporter . Schnell Publishing Company, New York.

  18. Plocek, T. 1998. Turpentine: a global perspective. Perf. Flav. 23: 1–5.

    Google Scholar 

  19. Gershenzon, J. 1994. Metabolic costs of terpenoid accumulation in higher plants. J. Chem. Ecol. 20: 1281– 1328.

    Article  Google Scholar 

  20. Morrow, P.A. and Fox, L.R. 1980. Effects of variation in Eucalyptus essential oil yield on insect growth and grazing damage. Oecologia 45: 209– 219.

    Article  Google Scholar 

  21. Reichardt, P.B., Bryant, J.P., Clausen, T.P., and Wieland, G.D. 1984. Defense of winter–dormant Alaska paper birch against snowshoe hares. Oecologia 65: 58– 69.

    Article  Google Scholar 

  22. Lehmann, T. and Brenneisen, R. 1995. High performance liquid chromatographic profiling of Cannabis products. J. Liquid Chrom. 18: 689– 700.

    Article  Google Scholar 

  23. Metivier, J. and Viana, A.M. 1979. The effect of long and short day length upon the growth of whole plants and the level of soluble proteins, sugars, and stevioside in leaves of Stevia rebaudiana Bert. J. Exp. Bot. 119: 1211– 1222.

    Article  Google Scholar 

  24. Forbes, J.F., Mudd, J.B., and Marsden, M.P.F. 1985. Epicuticular lipid accumulation on the leaves of Lycopersicon pennellii (Corr.) D'Arcy and Lycopersicon esculentum Mill. Plant Physiol. 77: 567 –570.

    Article  Google Scholar 

  25. Slone, J.H. and Kelsey, R.G. 1985. Isolation and purification of glandular secretory cells from Artemisia tridentata (ssp. vaseyana) by Percoll density gradient centrifugation. Amer. J. Bot. 72: 1445–1451.

    Article  Google Scholar 

  26. Russin, W.A., Uchytil, T.F., and Durbin, R.D. 1992. Isolation of structurally intact secretory cavities from leaves of African marigold, Tagetes erecta L. (Asteraceae). Plant Sci. 85: 115– 119.

    Article  Google Scholar 

  27. Yerger, E.H., Grazzini, R.A., Hesk, D., Cox–Foster, D.L., Craig, R., and Mumma, R.O. 1992. A rapid method for isolating glandular trichomes. Plant Physiol. 99: 1–7.

    Article  PubMed Central  Google Scholar 

  28. Hashidoko, Y. and Urashima, M. 1995. Efficient preparation of browning–free glandular trichome tissues from the surface of leaves of Rosa rugosa Thunb. Plant Cell Physiol. 36: 127–132.

    Google Scholar 

  29. Gershenzon, J., McCaskill, D., Rajaonarivony, J.I.M., Mihaliak, C., Karp, F., and Croteau, R. 1992. Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal. Biochem. 200: 130–138.

    Article  Google Scholar 

  30. Keene, C.K. and Wagner, G.J. 1985. Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol. 79: 1026– 1032.

    Article  Google Scholar 

  31. Alonso, W.R., Rajaonarivony, J.I.M., Gershenzon, J., and Croteau, R. 1992. Purification of 4S–limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita) and spearmint (Mentha spicata). J. Biol. Chem. 267: 7582–7587.

    Google Scholar 

  32. Kowalski, S.P., Eannetta, N.T., Hirzel, A.T., and Steffens, J.C. 1992. Purification and characterization of polyphenol oxidase from glandular trichomes of Solanum berthaultii. Plant Physiol. 100: 677–684.

    Article  Google Scholar 

  33. Guo, Z., Severson, R.F., and Wagner, G.J. 1994. Biosynthesis of the diterpene cis–abienol in cell–free extracts of tobacco trichomes. Arch. Biochem. Biophys. 308: 103–108 .

    Article  Google Scholar 

  34. Guo, Z. and Wagner, G.J. 1995. Biosynthesis of cembratrienols in cell–free extracts from tricomes of Nicotiana tabacum. Plant Sci. 110: 1– 10.

    Article  Google Scholar 

  35. Schultz, D.J., Cahoon, E.B., Shanklin, J., Craig, R., Cox–Foster, D.L., Mumma, R.O. et al. 1996. Expression of a D9 14:0–acyl carrier protein fatty acid desaturase gene is necessary for the production of v5 anacardic acids found in pest–resistant geranium (Pelargonium xhortorum). Proc. Natl. Acad. Sci. USA 93: 8771– 8775.

    Article  Google Scholar 

  36. Colby, S.M., Crock, J., Dowdle–Rizzo, B., Lemaux, P.G., and Croteau, R. 1998. Germacrene C synthase from Lycopersicon esculentum cv. VFNT cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene synthase. Proc. Natl. Acad. Sci. USA 95: 2216–2221.

    Article  Google Scholar 

  37. Crock, J., Wildung, M., and Croteau, R. 1997. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheremone (E)–b–farnesene. Proc. Natl. Acad. Sci. USA 94: 12833– 12838.

    Article  Google Scholar 

  38. Lange, B.M., Wildung, M.R., McCaskill, D., and Croteau, R. 1998. A novel family of transketolases directs isoprenoid biosynthesis via a mevalonate–independent pathway. Proc. Nat. Acad. Sci. USA 95: 2100–2104.

    Article  Google Scholar 

  39. Cheniclet, C. and Carde, J.–P. 1985. Presence of leucoplasts in secretory cells and of monoterpenes in the essential oil: a correlative study. Isr. J. Bot. 34: 219–238.

    Google Scholar 

  40. McCaskill, D., Gershenzon, J., and Croteau, R. 1992. Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L.). Planta 187: 445–454.

    Article  Google Scholar 

  41. Emes, M.J. and Neuhaus, H.E. 1997. Metabolism and transport in non–photosynthetic plastids. J. Exp. Bot. 48: 1995–2005.

    Google Scholar 

  42. McCaskill, D. and Croteau, R. 1995. Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha x piperita) rely exclusively on plastid–derived isopentenyl diphosphate. Planta 197: 49– 56.

    Article  Google Scholar 

  43. Foley, R.C. and Singh, K.B. 1994. Isolation of a Vicia faba metallothionein–like gene: expression in foliar trichomes. Plant Mol. Biol. 26: 435– 444.

    Article  Google Scholar 

  44. Gotor, C., Cejudo, F.J., Barroso, C., and Vega, J.M. 1997. Tissue–specific expression of ATCYS–3A, a gene encoding the cytosolic isoform of O–acetylserine(thiol)lyase in Arabidopsis. Plant J. 11: 347– 352.

    Article  Google Scholar 

  45. Orford, S.J. and Timmis, J.N. 1997. Abundant mRNAs specific to the developing cotton fibre. Theor. Appl. Gen. 94: 909–918.

    Article  Google Scholar 

  46. Grotewold, E., Chamberlin, M., Snook, M., Siame, B., Butler, L., Swenson, J. et al. 1998. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721–740.

    Google Scholar 

  47. Jaglo–Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104– 106.

    Article  Google Scholar 

  48. Oldroyd, G.E.D. and Staskawicz, B.J. 1998. Genetically engineered broad–spectrum disease resistance in tomato. Proc. Natl. Acad. Sci. USA 95: 10300–10305.

    Article  Google Scholar 

  49. Cao, H., Li, X. and Dong, X. 1998. Generation of broad–spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95: 6531– 6536.

    Article  Google Scholar 

  50. Altenburger, R. and Matile, P. 1990. Further observations on rhythmic emmission of fragrance in flowers. Planta 180: 194–197.

    Article  Google Scholar 

  51. Loughrin, J.H., Hamilton–Kemp, T.R., Anderson, R.A., and Hildebrand, D.F. 1991. Circadian rhythm of volatile emission from flowers of Nicotiana sylverstris and N. suaveolens. Physiol. Plant. 83: 492–496.

    Article  Google Scholar 

  52. Loughrin, J.H., Manukian, A., Heath, R.R., Turlings, T.C.J., and Tumlinson, J.H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore–injured cotton plants. Proc. Natl. Acad. Sci. USA 91: 11836–11840.

    Article  Google Scholar 

  53. Thiel, G. and Battey, N. 1998. Exocytosis in plants. Plant Mol. Biol. 38: 111– 125.

    Article  Google Scholar 

  54. Fahn, A. 1988. Secretory tissues in vascular plants. New Phytol. 108: 229–257.

    Article  Google Scholar 

  55. Skubatz, H., Kunkel, D.D., Howald, W.N., Trenkle, R., and Mookherjee, B. 1996. The Sauromatum guttatum appendix as an osmophore: excretory pathways, composition of volatiles and attractiveness to insects. New Phytol. 134: 631–640.

    Article  Google Scholar 

  56. Skubatz, H., Kunkel, D.D., Pratt, J.M., Howald, W.N., Hartman, T.G., and Meeuse, B.J.D. 1995. Pathway of terpene excretion by the appendix of Sauromatum guttatum. Proc. Natl. Acad. Sci. USA 92: 10084–10088.

    Article  Google Scholar 

  57. Raskin, I. 1992. Role of salicylic acid in plants. Ann. Rev. Plant Physiol., Plant Mol. Biol. 43: 439– 463.

    Article  Google Scholar 

  58. Lewis, W.J., van Lenteren, J.C., Phatak, S.C., and Tumlinson, J.H. 1997. A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. USA 94: 12243– 12248.

    Article  Google Scholar 

  59. Bell, A.A., Stipanovic, R.D., Elzen, G.W., and Williams Jr, H.J. 1987. Structural and genetic variation of natural pesticides in pigment glands of cotton (Gossypium), pp. 477–490, in Allelochemicals: role in agriculture and forestry, Waller, G.R. (eds.). American Chemical Society, Wahington, DC.

    Book  Google Scholar 

  60. Elzen, G.W., Williams, H.J., Bell, A.A., Stipanovic, R.D., and Vinson, S.B. 1985. Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum L. cultivars and lines by gas chromatography. J. Agric. Food Chem. 33: 1079–1082.

    Article  Google Scholar 

  61. Röse, U.S.R., Manukian, A., Heath, R.R., and Tumlinson, J.H. 1996. Volatile semiochemicals released from undamaged cotton leaves. Plant Physiol. 111: 487– 495.

    Article  Google Scholar 

  62. Pare, P.W. and Tumlinson, J.H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114: 1161– 1167.

    Article  Google Scholar 

  63. Goffreda, J.C., Steffens, J.C., and Mutschler, M.A. 1990. Association of epicuticular sugars with aphid resistance in hybrids with wild tomato. J. Amer. Soc. Hort. Sci. 115: 161–165.

    Article  Google Scholar 

  64. Fery, R.L. and Kennedy, G.C. 1987. Genetic analysis of 2–tridecanone concentration, leaf trichome characteristics, and tobacco hormworm resistance in tomato. J. Amer. Soc. Hort. Sci. 112: 886–891.

    Google Scholar 

  65. Carter, C.D., Gianfagna, T.J., and Sacalis, J.N. 1989. Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetle. J. Agric. Food Chem. 37: 1425– 1428.

    Article  Google Scholar 

  66. Thipyapong, P., Joel, D.M., and Steffens, J.C. 1997. Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol. 113: 707–718.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Burnett, R.J. Maldonado–Mendoza, I.E., McKnight, T.D. and Nessler, C.L. 1993. Expression of a 3–hydroxy–3–methylglutaryl coenzyme A reductase gene from Camptotheca acuminata is differentially regulated by wounding and methyl jasmonate. Plant Physiol. 103: 41–48.

    Article  Google Scholar 

  68. Spring, O., Rodon, U., and Macias, F.A. 1992. Sesquiterpenes from noncapitate glandular trichomes of Helianthus annuus. Phytochemistry 31: 1541–1544.

    Article  Google Scholar 

  69. Lanyon, V.S., Turner, J.C., and Mahlberg, P.G. 1981. Quantitative analysis of cannabinoids in the secretory product from capitate–stalked glands of Cannabis sativa L. (Cannabaceae). Bot. Gaz. 142: 316–319.

    Article  Google Scholar 

  70. van der Werf, H.M.G., Mathijssen, E.W.J.M., and Haverkort, A.J. 1996. The potential of hemp ( Cannabis sativa L.) for sustainable fibre production: a crop physiological appraisal. Ann. Appl. Biol. 129: 109– 123.

    Article  Google Scholar 

  71. Marks, M.D. 1997. Molecular genetic analysis of trichome development in Arabidopsis. Ann. Rev. Plant Physiol., Plant Mol. Biol. 48: 137–163.

    Article  Google Scholar 

  72. Hülskamp, M. and Schnittger, A. 1998 . Spatial regulation of trichome formation in Arabidopsis thaliana . Sem. Cell Dev. Biol. 9: 213– 220.

    Article  Google Scholar 

  73. Oppenheimer, D.G., Herman, P.L., Sivakumaran, S., Esch, J., and Marks, M.D. 1991. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67: 483 –493.

    Article  Google Scholar 

  74. Wada, T., Tachibana, T., Shimura, Y., and Okada, K. 1997. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277: 1113–1116.

    Article  Google Scholar 

  75. Rerie, W.G., Feldmann, K.A., and Marks, M.D. 1994. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev. 8: 1388– 1399.

    Article  Google Scholar 

  76. Perazza, D., Vachon, G., and Herzog, M. 1998. Gibberellins promote trichome formation by up–regulating GLABROUS1 in Arabidopsis. Plant Physiol. 117: 375–383.

    Article  Google Scholar 

  77. Brubaker, C.L., Benson, C.G., Miller, C., and Leach, D.N. 1996 . Occurance of terpenoid aldehydes and lysigenous cavities in the "glandless" seeds of Australian Gossypium species. Aust. J. Bot. 44: 601–612.

    Article  Google Scholar 

  78. Lin, Q., Hamilton, W.D.O., and Merryweather, A. 1996. Cloning and initial characterization of 14 myb–related cDNAs from tomato (Lycopersicon esculentum cv. Ailsa Craig). Plant Mol. Biol. 30: 1009–1020.

    Article  Google Scholar 

  79. Rosinski, J.A. and Atchley, W.R. 1998 . Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J. Mol. Evol. 46: 74–83.

    Article  Google Scholar 

  80. Lemke, C.A. and Mutschler, M.A. 1984. Inheritance of glandular trichomes in crosses between Lycopersicon esculentum and Lycopersicon pennellii. J. Amer. Soc. Hort. Sci. 109: 592–596.

    Google Scholar 

  81. Maliepaard, C., Bas, N., van Heusden, S., Kos, J., Pet, G., Verkerk, R. et al. 1995. Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum X Lycopersicon hrisutum f. glabratum. Heredity 75: 425–433.

    Article  Google Scholar 

  82. Blauth, S.L., Churchill, G.A., and Mutschler, M.A. 1998. Identification of quantitative trait loci associated with acylsugar accumulation using intraspecific populations of the wild tomato, Lycopersicon pennellii. Theor. Appl. Gen. 96: 458–467.

    Article  Google Scholar 

  83. Tanksley, S.D., Ganal, M.W., Prince, J.P., De Vincente, M.C., Bonierbale, M.W., Broun, P. et al. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    PubMed Central  Google Scholar 

  84. van Ooijen, J.W., Sandbrink, J.M., Vrielink, M., Verkerk, R., Zabel, P., and Lindhout, P. 1994. An RFLP linkage map of Lycopersicon peruvianum. Theor. Appl. Gen. 89: 1007–1013.

    Article  Google Scholar 

  85. Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A. et al. 1997. A new model system for tomato genetics. Plant J. 12: 1465–1472.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David McCaskill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCaskill, D., Croteau, R. Strategies for bioengineering the development and metabolism of glandular tissues in plants. Nat Biotechnol 17, 31–36 (1999). https://doi.org/10.1038/5202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing