Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geobacter metallireducens accesses insoluble Fe(iii) oxide by chemotaxis

Abstract

Microorganisms that use insoluble Fe(iii) oxide as an electron acceptor can have an important function in the carbon and nutrient cycles of aquatic sediments and in the bioremediation of organic and metal contaminants in groundwater1,2. Although Fe(iii) oxides are often abundant, Fe(iii)-reducing microbes are faced with the problem of how to access effectively an electron acceptor that can not diffuse to the cell. Fe(iii)-reducing microorganisms in the genus Shewanella have resolved this problem by releasing soluble quinones that can carry electrons from the cell surface to Fe(iii) oxide that is at a distance from the cell3,4. Here we report that another Fe(iii)-reducer, Geobacter metallireducens, has an alternative strategy for accessing Fe(iii) oxides. Geobacter metallireducens specifically expresses flagella and pili only when grown on insoluble Fe(iii) or Mn(iv) oxide, and is chemotactic towards Fe(ii) and Mn(ii) under these conditions. These results suggest that G. metallireducens senses when soluble electron acceptors are depleted and then synthesizes the appropriate appendages to permit it to search for, and establish contact with, insoluble Fe(iii) or Mn(iv) oxide. This approach to the use of an insoluble electron acceptor may explain why Geobacter species predominate over other Fe(iii) oxide-reducing microorganisms in a wide variety of sedimentary environments5,6,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of flagella and pili by G. metallireducens.
Figure 2: Chemotaxis to Fe(ii) and Mn(ii).

Similar content being viewed by others

References

  1. Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16, 41–84 (2000).

    Article  CAS  Google Scholar 

  2. Lovley, D. R. Fe(iii) and Mn(iv) Reduction in Environmental Metal–Microbe Interactions (ed. Lovley, D. R.) 3–30 (ASM, Washington DC, 2000).

    Book  Google Scholar 

  3. Newman, D. K. & Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature 405, 94–97 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Nevin, K. P. & Lovley, D. R. in ASM 101st General Meeting 588 (ASM, Washington DC, 2001).

    Google Scholar 

  5. Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg, D. & Lovley, D. R. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Microbiol. 65, 3056–3063 (1999).

    CAS  Google Scholar 

  6. Snoeyenbos-West, O. L., Nevin, K. P., Anderson, R. T. & Lovley, D. R. Enrichment of Geobacter species in response to stimulation of Fe(iii) reduction in sandy aquifer sediments. Microb. Ecol. 39, 153–167 (2000).

    Article  CAS  Google Scholar 

  7. Röling, W. F. M., van Breukelen, B. M., Braster, M., Lin, B. & van Verseveld, H. W. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol. 67, 4619–4629 (2001).

    Article  Google Scholar 

  8. Stein, L. Y., La Duc, M. T., Grundl, T. J. & Nealson, K. H. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ. Microbiol. 3, 10–18 (2001).

    Article  CAS  Google Scholar 

  9. Lovley, D. R., Stolz, J. F., Nord, G. L. Jr & Phillips, E. J. P. Anaerobic production of magnetite by a dissimilatory iron-reducing bacterium. Nature 330, 252–254 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Lovley, D. R. & Phillips, E. J. P. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol 54, 1472–1480 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lovley, D. R. et al. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297–299 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Lovley, D. R. et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336–344 (1993).

    Article  CAS  Google Scholar 

  13. Henrichsen, J. Twitching motility. Annu. Rev. Microbiol. 37, 81–93 (1983).

    Article  CAS  Google Scholar 

  14. Strom, M. S. & Lory, S. Structure-function and biogenesis of the type IV pili. Annu. Rev. Microbiol. 47, 565–596 (1993).

    Article  CAS  Google Scholar 

  15. Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10 (1999).

    Article  CAS  Google Scholar 

  16. Alm, R. A. & Mattick, J. S. Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene 192, 89–98 (1997).

    Article  CAS  Google Scholar 

  17. Nevin, K. P. & Lovley, D. R. in ASM 100th General Meeting 598 (ASM, Washington DC, 2000).

    Google Scholar 

  18. Nealson, K. H., Moser, D. P. & Saffarini, D. A. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl. Environ. Microbiol 61, 1551–1554 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Macnab, R. M. in Escherichia coli and Salmonella: Cellular and Molecular Biology Vol. 1 (ed. Neidhardt, F. C. et al.) 123–145 (ASM, Washington DC, 1996).

    Google Scholar 

  20. Wu, S. S. & Kaiser, D. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179, 7748–7758 (1997).

    Article  CAS  Google Scholar 

  21. Phillips, E. J. P. & Lovley, D. R. Determination of ferric and ferrous iron in oxalate extracts of sediment. Soil Sci. Soc. Am. J. 51, 938–941 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Parales, R. E., Ditty, J. L. & Harwood, C. S. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene and trichloroethylene. Appl. Environ. Microbiol. 66, 4098–4104 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.Yin and the Central Microscopy Facility at the University of Massachusetts for assistance with transmission electron microscopy. Preliminary sequence data was obtained from The Institute for Genomic Research website at http://www.tigr.org. This research was supported with grants from the Office of Biological and Environmental Research of the Department of Energy and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek R. Lovley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childers, S., Ciufo, S. & Lovley, D. Geobacter metallireducens accesses insoluble Fe(iii) oxide by chemotaxis. Nature 416, 767–769 (2002). https://doi.org/10.1038/416767a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416767a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing