Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors

Abstract

Autoreactive B cells are present in the lymphoid tissues of healthy individuals, but typically remain quiescent. When this homeostasis is perturbed, the formation of self-reactive antibodies can have serious pathological consequences. B cells expressing an antigen receptor specific for self-immunoglobulin-γ (IgG) make a class of autoantibodies known as rheumatoid factor (RF). Here we show that effective activation of RF+ B cells is mediated by IgG2a–chromatin immune complexes and requires the synergistic engagement of the antigen receptor and a member of the MyD88-dependent Toll-like receptor (TLR) family. Inhibitor studies implicate TLR9. These data establish a critical link between the innate and adaptive immune systems in the development of systemic autoimmune disease and explain the preponderance of autoantibodies reactive with nucleic acid–protein particles. The unique features of this dual-engagement pathway should facilitate the development of therapies that specifically target autoreactive B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anti-nucleosome antibody stimulation of RF+ B cells is DNase sensitive.
Figure 2: Anti-TNP–TNP-BSA immune complexes fail to efficiently stimulate proliferation of RF+ B cells.
Figure 3: Stimulation of RF+ B cells by autoantibody–autoantigen immune complex is not dependent on the complement receptor.
Figure 4: Stimulation of RF+ B cells by autoantibody–autoantigen immune complex is dependent on MyD88.
Figure 5: Stimulation of RF+ B cells by autoantibody–autoantigen immune complexes can be blocked by inhibitors of the TLR9 signalling pathway.

Similar content being viewed by others

References

  1. Tan, E. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv. Immunol. 44, 93–151 (1989)

    Article  CAS  PubMed  Google Scholar 

  2. Theofilopoulos, A. N. et al. Association of lpr gene with graft-vs-host disease-like syndrome. J. Exp. Med. 162, 1–18 (1985)

    Article  CAS  PubMed  Google Scholar 

  3. Wolfowicz, C. B., Sakorafas, P., Rothstein, T. L. & Marshak-Rothstein, A. Oligoclonality of rheumatoid factors arising spontaneously in lpr/lpr mice. Clin. Immunol. Immunopathol. 46, 382–395 (1988)

    Article  CAS  PubMed  Google Scholar 

  4. Shlomchik, M. J., Zharhary, D., Camper, S., Saunders, T. & Weigert, M. A rheumatoid factor transgenic mouse model for autoantibody regulation. Int. Immunol. 5, 1329–1341 (1993)

    Article  CAS  PubMed  Google Scholar 

  5. Jacobson, B. A. et al. An isotype switched and somatically mutated rheumatoid factor clone isolated from a MRL-lpr/lpr mouse exhibits limited intraclonal affinity maturation. J. Immunol. 152, 4489–4499 (1994)

    CAS  PubMed  Google Scholar 

  6. Hannum, L. G., Ni, D., Haberman, A. M., Weigert, M. G. & Shlomchik, M. J. A disease-related rheumatoid factor autoantibody is not tolerized in a normal mouse: implications for the origins of autoantibodies in autoimmune disease. J. Exp. Med. 184, 1269–1278 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Wang, H. & Shlomchik, M. J. Autoantigen-specific B cell activation in Fas-deficient rheumatoid factor immunoglobulin transgenic mice. J. Exp. Med. 190, 639–649 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rifkin, I. R. et al. Immune complexes present in the sera of autoimmune mice activate rheumatoid factor B cells. J. Immunol. 165, 1626–1633 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Emlen, W., Holers, V. M., Arend, W. P. & Kotzin, B. Regulation of nuclear antigen expression on the cell surface of human monocytes. J. Immunol. 148, 3042–3048 (1992)

    CAS  PubMed  Google Scholar 

  10. Monestier, M. & Novick, K. E. Specificities and genetic characteristics of nucleosome-reactive antibodies from autoimmune mice. Mol. Immunol. 33, 89–99 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. Carter, R. H., Spycher, M. O., Ng, Y. C., Hoffman, R. & Fearon, D. T. Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J. Immunol. 141, 457–463 (1988)

    CAS  PubMed  Google Scholar 

  12. Ahearn, J. M. et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and an impaired B cell response to T-dependent antigen. Immunity 4, 251–262 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. Lemaitre, B., Nicholas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. A human homologue of the Drosophila Toll protein signals activation of adaptive autoimmunity. Nature 388, 323–324 (1997)

    Article  Google Scholar 

  15. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001)

    Article  CAS  Google Scholar 

  16. Li, M. et al. An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J. Immunol. 166, 7128–7135 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Horng, T., Barton, G. M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signalling pathway. Nature Immunol. 2, 835–841 (2001)

    Article  CAS  Google Scholar 

  18. Adachi, O. et al. Targeted disruption of the Myd88 gene results in loss of IL-1 and IL-18-mediated function. Immunity 9, 143–150 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. Hacker, H. et al. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumour necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med. 192, 595–600 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singal, R. & Ginder, G. D. DNA methylation. Blood 93, 4059–4070 (1999)

    CAS  PubMed  Google Scholar 

  21. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Yi, A.-K. et al. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J. Immunol. 160, 4755–4761 (1998)

    CAS  PubMed  Google Scholar 

  23. Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230–6240 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benaroch, P. et al. How MHC class II molecules reach the endocytic pathway. EMBO J. 14, 37–49 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Massari, P. et al. Immune stimulation by neisserial porins is TLR2 and MyD88-dependent. J. Immunol. 168, 1533–1537 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. The Canadian Hydroxychloroquine Study Group. A randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. N. Engl. J. Med. 324, 150–154 (1991)

    Article  Google Scholar 

  27. Furst, d. E. et al. Dose-loading with hydroxychloroquine improves the rate of response in early, active rheumatoid arthritis. Arthritis Rheum. 42, 357–365 (1999)

    Article  CAS  PubMed  Google Scholar 

  28. Lenart, P., Stunz, L., Yi, A.-K., Krieg, A. M. & Ashman, R. F. CpG stimulation of primary mouse B cells is blocked by inhibitory oligodeoxyribonucleotides at a site proximal to NF-κB activation. Antisense Nucleic Acid Drug Dev. 4, 247–256 (2001)

    Article  Google Scholar 

  29. Shlomchik, M. J., Marshak-Rothstein, A., Wolfowicz, C. B., Rothstein, T. L. & Weigert, M. G. The role of clonal selection and somatic mutation in autoimmunity. Nature 328, 805–811 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zeng, D., Lee, M.-K., Tung, J., Brendolan, A. & Strober, S. Cutting edge: A role for CD1 in the pathogenesis of Lupus in NZB/NZW mice. J. Immunol. 164, 5000–5004 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. William, J., Christensen, C. & Shlomchick, M. J. Evolution of an autoantibody response is linked to somatic hypermutation outside of germinal centers. (submitted).

  32. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56–59 (1998)

    Article  CAS  PubMed  Google Scholar 

  33. Bickerstaff, M. C. M. et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nature Med. 5, 694–697 (1999)

    Article  CAS  PubMed  Google Scholar 

  34. Napirei, M. et al. Features of systemic lupus erythematosis in DNase1-deficient mice. Nature Genet. 25, 177–180 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Bell, D. A., Morrison, B. & VandenBygaart, P. Immunogenic DNA-related factors. Nucleosomes spontaneously released from normal murine lymphoid cells stimulate proliferation and immunoglobulin synthesis of normal mouse lymphocytes. J. Clin. Invest. 85, 1487–1496 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bell, D. A. & Morrison, B. The spontaneous apoptotic death of normal human lymphocytes in vitro: the release of, and immunoproliferative response to, nucleosomes in vitro. Clin. Immunol. Immunopathol. 60, 1326 (1991)

    Article  Google Scholar 

  38. Moller, G., Andersson, J. & Sjoberg, O. Lipopolysaccharides can convert heterologous red cells into thymus-independent antigens. Cell. Immunol. 4, 416–424 (1972)

    Article  CAS  PubMed  Google Scholar 

  39. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Carroll, S. Akira and D. Golenbock for providing the Cr2-deficient and MyD88-deficient mice; M. Boulé, C. Chi, C. Lau and G. Yospin for technical assistance; L. Wetzler and D. Golenbock for providing TLR ligands; H. Ploegh for providing concanamycin B; M. Fenton, L. Wetzler, R. Corley, R. Medzhitov, T. Rothstein and D. Stollar for reviewing the manuscript and/or discussions. This work was supported by grants from the National Institutes of Health, the Arthritis Foundation, and the National Kidney Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

A provisional patent on the use of TLR inhibitors in the treatment of autoimmune disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leadbetter, E., Rifkin, I., Hohlbaum, A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002). https://doi.org/10.1038/416603a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416603a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing