Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation

Abstract

Recent interpretations of Himalayan–Tibetan tectonics have proposed that channel flow in the middle to lower crust can explain outward growth of the Tibetan plateau1,2,3, and that ductile extrusion of high-grade metamorphic rocks between coeval normal- and thrust-sense shear zones can explain exhumation of the Greater Himalayan sequence4,5,6,7. Here we use coupled thermal–mechanical numerical models to show that these two processes—channel flow and ductile extrusion—may be dynamically linked through the effects of surface denudation focused at the edge of a plateau that is underlain by low-viscosity material. Our models provide an internally self-consistent explanation for many observed features of the Himalayan–Tibetan system8,9,10.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General tectonic features of the Himalaya and southern Tibet5,8–10,15,16.
Figure 2: Development of surface-coupled channel flow (ah) and effect of changing convergence velocity and subduction conditions (ij).
Figure 3: Model channel flow modes and exhumation/extrusion styles.
Figure 4: Comparison of model 3 (51 Myr after start of model) with observations from the Himalayan–Tibetan system.

Similar content being viewed by others

References

  1. Royden, L. H. Coupling and decoupling of crust and mantle in convergent orogens: implications for strain partitioning in the crust. J. Geophys. Res. 101, 17679–17705 (1996).

    Article  ADS  Google Scholar 

  2. Clark, M. K. & Royden, L. H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 28, 703–706 (2000).

    Article  ADS  Google Scholar 

  3. Shen, F., Royden, L. H. & Burchfiel, B. C. Large-scale crustal deformation of the Tibetan Plateau. J. Geophys. Res. 106, 6793–6816 (2001).

    Article  ADS  Google Scholar 

  4. Grujic, D. et al. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260, 21–43 (1996).

    Article  ADS  Google Scholar 

  5. Wu, C. et al. Yadong cross structure and the South Tibetan Detachment in the east central Himalaya (89°-90°E). Tectonics 17, 28–45 (1998).

    Article  ADS  Google Scholar 

  6. Vannay, J.-C. & Grasemann, B. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol. Mag. 138, 253–276 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Grujic, D., Hollister, L. S. & Parrish, R. R. Himalayan metamorphic sequence as an orogenic channel; insight from Bhutan. Earth Planet. Sci Lett. (in the press).

  8. Burchfiel, B. C. et al. The South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Spec. Pap. Geol. Soc. Am. 269, (1992).

  9. Nelson, K. D. et al. Partially molten middle crust beneath southern Tibet: a synthesis of Project INDEPTH results. Science 274, 1684–1688 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Hodges, K. V. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull. 112, 324–350 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Willett, S. D., Beaumont, C. & Fullsack, P. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21, 371–374 (1993).

    Article  ADS  Google Scholar 

  12. Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Lee, B. in Slave - Northern Cordillera Lithospheric Evolution (SNORCLE) and Cordilleran Tectonics Workshop (eds Cook, F. & Erdmer, P.) 112–170 (Lithoprobe Report 79, Lithoprobe Secretariat, University of British Colombia, Vancouver, 2001).

    Google Scholar 

  13. Jamieson, R. A., Beaumont, C., Nguyen, M. H. & Lee, B. Interaction of metamorphism, deformation, and exhumation in large convergent orogens. J. Metamorph. Geol. 20, 1–16 (2002).

    Article  ADS  Google Scholar 

  14. Gleason, G. C. & Tullis, J. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247, 1–23 (1995).

    Article  ADS  Google Scholar 

  15. Hauck, M. L., Nelson, K. D., Brown, L. D., Zhao, W. & Ross, A. R. Crustal structure of the Himalyan orogen at 90° east longitude from Project INDEPTH deep reflection profiles. Tectonics 17, 481–500 (1998).

    Article  ADS  Google Scholar 

  16. Owens, T. J. & Zandt, G. Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387, 37–43 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Zeitler, P. K. et al. Crustal reworking at Nanga Parbat,: Pakistan: Metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics 20, 712–718 (2001).

    Article  ADS  Google Scholar 

  18. DeCelles, P. G. et al. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20, 487–509 (2001).

    Article  ADS  Google Scholar 

  19. Lee, J. et al. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics 19, 872–895 (2000).

    Article  ADS  Google Scholar 

  20. White, N. M. et al. Constraints on the structural evolution, exhumation, and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet. Sci. Lett. (in the press).

  21. France-Lanord, C., Derry, L. & Michard, A. in Himalayan Tectonics (eds Treloar, P. J. & Searle, M. P.) 603–621 (Spec. Publ. 74, Geological Society, London, 1993).

    Google Scholar 

  22. Harrison, T. M. et al. A Late Miocene-Pliocene origin for the central Himalayan inverted metamorphism. Earth Planet. Sci. Lett. 146, E1–E7 (1997).

    Article  CAS  Google Scholar 

  23. Parrish, R. R. & Hodges, K. V. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geol. Soc. Am. Bull. 108, 904–911 (1996).

    Article  ADS  CAS  Google Scholar 

  24. DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B. & Spurlin, M. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288, 497–499 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Inger, S. & Harris, N. B. W. Tectonothermal evolution of the High Himalayan Crystalline Sequence, Langtang Valley, northern Nepal. J. Metamorph. Geol. 10, 439–452 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Macfarlane, A. M. An evaluation of the inverted metamorphic gradient at Langtang National Park, central Nepal Himalaya. J. Metamorph. Geol. 13, 595–612 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Fraser, G., Worley, B. & Sandiford, M. High-precision geothermobarometry across the High Himalayan metamorphic sequence, Langtang Valley, Nepal. J. Metamorph. Geol. 18, 665–682 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Searle, M. P. et al. Shisha Pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J. Geol. 105, 307–326 (1997).

    Article  Google Scholar 

  29. Hodges, K. V., Parrish, R. R. & Searle, M. P. Tectonic evolution of the central Annapurna range, Nepalese Himalaya. Tectonics 15, 1264–1291 (1996).

    Article  ADS  Google Scholar 

  30. Mackwell, S. J., Zimmerman, M. E. & Kohlstedt, D. L. High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. 103, 975–984 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by Lithoprobe Supporting Geoscience and NSERC Research grants to C.B. and R.A.J., and the Inco Fellowship of the Canadian Institute for Advanced Research to C.B. All the models were run using the finite element thermal-mechanical program developed by P. Fullsack. The work benefited from discussions with J. Braun, L. Brown, L. Derry, P. Fullsack, D. Grujic, D. Nelson, S. Medvedev, O. Vanderhaeghe and K. Whipple. Comments by L. Royden substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Beaumont.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaumont, C., Jamieson, R., Nguyen, M. et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742 (2001). https://doi.org/10.1038/414738a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414738a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing