Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression

Abstract

Normal mammalian growth and development are highly dependent on the regulation of the expression and activity of the Myc family of transcription factors. Mxi1-mediated inhibition of Myc activities requires interaction with mammalian Sln3A or Sin3B proteins, which have been purported to act as scaffolds for additional co-repressor factors. The identification of two such Sin3-associated factors, the nuclear receptor co-repressor (N-CoR) and histone deacetylase (HD1), provides a basis for Mxi1/Sin3-induced transcriptional repression and tumour suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Henriksson, M. & Luscher, B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68, 109–182 (1996).

    Article  CAS  Google Scholar 

  2. Ayer, D. E., Lawrence, Q. A. & Eiseninan, R. N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767–776 (1995).

    Article  CAS  Google Scholar 

  3. Schreiber-Agus, N. et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80, 777–786 (1995).

    Article  CAS  Google Scholar 

  4. Koskinen, P. J., Ayer, D. E. & Eisenman, R. N. Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions. Cell Growth Differ. 6, 623–629 (1995).

    CAS  PubMed  Google Scholar 

  5. Rao, G. et al. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression domain of the Myc antagonist Mxi. Oncogene 12, 1165–1172 (1996).

    CAS  PubMed  Google Scholar 

  6. Harper, S. E., Qiu, Y. & Sharp, P. A. Sin3 corepressor function in Myc-induced transcription and transformation. Proc. Natl Acad. Sci. USA 93, 8536–8540 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Ayer, D. E., Laherty, C. D., Lawrence, Q. A., Armstrong, A. P. & Eisenman, R. N. Mad proteins contain a dominant transcription repression domain. Mol. Cell. Biol. 16, 5772–5781 (1996).

    Article  CAS  Google Scholar 

  8. Wang, H., Clark, I., Nicholson, P. R., Herskowitz, I. & Stillman, D. J. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol. Cell. Biol. 10, 5927–5936 (1990).

    Article  CAS  Google Scholar 

  9. Wang, H. & Stillman, D. J. Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol. 13, 1805–1814 (1993).

    Article  CAS  Google Scholar 

  10. Vidal, M., Strich, R., Esposito, R. E. & Gaber, R. F. RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11, 6306–6316 )1991).

    Article  CAS  Google Scholar 

  11. Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391 (1992).

    Article  CAS  Google Scholar 

  12. Nasmyth, K., Stillman, D. J. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48, 579–587 (1987).

    Article  CAS  Google Scholar 

  13. Vidal, M. & Gaber, R. F. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 6317–6327 (1991).

    Article  CAS  Google Scholar 

  14. Stillman, D. J., Dorland, S. & Yu, Y. Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SWI5 transcriptional activator. Genetics 136, 781–788 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Yang, A. -M., Inouye, C., Zeng, Y., Bearss, D. & Seto, E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl Acad. Sci. USA 93, 12845–12850 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Wolffe, A. P. Histone deacetylase: a regulator of transcription. Science 272, 408–411 (1996).

    Article  Google Scholar 

  18. Wade, P. A., Pruss, D. & Wolffe, A. P. Histone acetylation: chromatin in action. Trends Biochem. Sci. (in the press).

  19. Hörlein, A. J. et al. Ligand- independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    Article  ADS  Google Scholar 

  20. Zamir, I. et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16, 5458–5465 (1996).

    Article  CAS  Google Scholar 

  21. Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).

    Article  CAS  Google Scholar 

  22. Matallana, E., Franco, L. & Perez-Ortin, J. E. Chromatin structure of the yeast SUC2 promoter in regulatory mutants. Mol. Gen. Genet. 231, 395–400 (1992).

    Article  CAS  Google Scholar 

  23. Cooper, J. P., Roth, S. Y. & Simpson, R. I The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure. Genes Dev. 8, 1400–1410 (1994).

    Article  CAS  Google Scholar 

  24. Tzamarias, D. Struhl, K. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature 369, 758–761 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Herschbach, B. M., Arnaud, M. B. & Johnson, A. D. Transcriptional repression directed by the yeast alpha-2 protein in vitro. Nature 370, 309–311 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Wong, J., Shi, Y. B. & Wolffe, A. P. A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. Genes Dev. 9, 2696–2711 (1995).

    Article  CAS  Google Scholar 

  27. Khavari, P. A., Peterson, C. L., Tamkun, J. W. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Muchardt, C. & Yaniv, M. A human homologue of Saccharomyces cerevisiae SNF2/SW12 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12, 4279–4290 (1993).

    Article  CAS  Google Scholar 

  29. Chiba, H. Muramatsu, M., Nomoto, A. & Kato, H. Two human homologues of Saccharomyces cerevisiae SW12/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 22, 1815–1820 (1994).

    Article  CAS  Google Scholar 

  30. Dunaief, J. L. et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79, 119–130 (1994).

    Article  CAS  Google Scholar 

  31. Strober, B. E., Dunaief, J. L.,, Guha, S. & Goff, S. P. Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol. Cell. Biol. 16, 1576–1583 (1996).

    Article  CAS  Google Scholar 

  32. Borrow, J. et al. The translocation t(8;16) (p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nature Genet. 14, 33–41 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Yang, X.-J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. Ap300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Haupt, Y., Alexander, W. S., Barri, G., Klinken S. P. & Adams, J, M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eµ-myc transgenic mice. Cell 65, 753–763 (1991).

    Article  CAS  Google Scholar 

  36. van Lohuizen, M. et al. Identification of cooperating oncogenes in Eµ-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991).

    Article  CAS  Google Scholar 

  37. van Lohuizen, M, Frasch, M., Wientjens, E. & Berns, A. Sequence similarity between the mammalian bmi-1 proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2. Nature 353, 353–355 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  CAS  Google Scholar 

  39. Roy, A. L., Carruthers, C., Gutjahr, T. & Roder, R. G. Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365, 359–361 (1993).

    Article  ADS  CAS  Google Scholar 

  40. Li, L. H., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E. B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070–4079 (1994).

    Article  CAS  Google Scholar 

  41. Lee, L. A., Dolde, C., Barret, J., Wu, C. S. & Dang, C. V. Alink between c-Myc-mediated transcriptional repression and neoplastic transformation. J. Clin. Invest. 97, 1687–1695 (1996).

    Article  CAS  Google Scholar 

  42. Galaktionov, K., Chen, X. & Beach, D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382, 511–517 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Wolffe, A. P. & Prusse, D. Targeting chromatin disruption: transcription regulators that acetylate histories. Cell 84, 817–819 (1996).

    Article  CAS  Google Scholar 

  44. Brownell, J. E. & Allis, C. D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Corr. Opin. Genet Dev. 6, 176–184 (1996).

    Article  CAS  Google Scholar 

  45. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).

    Google Scholar 

  46. Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA 93, 14503–14508 (1996).

    Article  ADS  CAS  Google Scholar 

  47. De Rubertis, F. et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384, 589–591 (1996).

    Article  ADS  CAS  Google Scholar 

  48. DePinho, R. A., Schreiber-Agus, N. & Alt,F. W. Myc family oncogenes in the development of normal and neoplastic cells. Adv. Cancer Res. 57, 1–46 (1991).

    Article  CAS  Google Scholar 

  49. Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner of Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).

    Article  CAS  Google Scholar 

  50. Yew, P. R., Liu, X. & Berk, A. J. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev. 8, 190–202 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alland, L., Muhle, R., Hou, H. et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49–55 (1997). https://doi.org/10.1038/387049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387049a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing