Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary cortical representation of sounds by the coordination of action-potential timing

Abstract

CORTICAL population coding could in principle rely on either the mean rate of neuronal action potentials, or the relative timing of action potentials, or both. When a single sensory stimulus drives many neurons to fire at elevated rates, the spikes of these neurons become tightly synchronized1,2, which could be involved in 'binding' together individual firing-rate feature representations into a unified object percept3. Here we demonstrate that the relative timing of cortical action potentials can signal stimulus features themselves, a function even more basic than feature grouping. Populations of neurons in the primary auditory cortex can coordinate the relative timing of their action potentials such that spikes occur closer together in time during continuous stimuli. In this way cortical neurons can signal stimuli even when their firing rates do not change. Population coding based on relative spike timing can systematically signal stimulus features, it is topographically mapped, and it follows the stimulus time course even where mean firing rate does not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Nature 338, 334–337 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Singer, W. & Gray, C. M. A. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  Google Scholar 

  3. von der Malsburg, C. Internal report, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany (1981).

  4. Adrian, E. D. Electroenceph. clin. Neurophysiol. 2, 377–388 (1950).

    Article  CAS  Google Scholar 

  5. Perkel, D. H., Gerstein, G. L. & Moore, L. Biophys. J. 7, 391–418 (1967).

    Article  CAS  Google Scholar 

  6. Middlebrooks, J. C., Clock, A. E., Xu, L. & Green, D. M. Science 264, 842–844 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Abeles, M., Bergman, H., Margalit, E. & Vaadia, E. J. Neurophysiol. 70, 1629–1638 (1993).

    Article  CAS  Google Scholar 

  8. Abeles, M. Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge Univ. Press, New York, 1991).

    Book  Google Scholar 

  9. Dickson, J. W. & Gerstein, G. L. J. Neurophysiol. 37, 1239–1261 (1974).

    Article  CAS  Google Scholar 

  10. Eggermont, J. J. J. Neurophysiol. 71, 246–270 (1994).

    Article  CAS  Google Scholar 

  11. Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. J. Neurosci. 6(4), 1160–1170 (1986).

    Article  CAS  Google Scholar 

  12. Ahissar, M. et al. J. Neurophysiol. 67, 203–215 (1992).

    Article  CAS  Google Scholar 

  13. Nicolelis, M. A. L., Baccala, L. A., Lin, R. C. S. & Chapin, J. K. Science 268, 1353–1358 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Brugge, J. F. & Merzenich, M. M. J. Neurophysiol. 36, 1138–1158 (1973).

    Article  CAS  Google Scholar 

  15. Creutzfeldt, O., Hellweg, F. C. & Schreiner, C. Expl Brain Res. 39, 87–104 (1980).

    Article  CAS  Google Scholar 

  16. Pfingst, B. E. & O'Connor, T. A. J. Neurophysiol. 45, 16–34 (1981).

    Article  CAS  Google Scholar 

  17. Mountcastle, V. B., Davies, P. W. & Berman, A. L. J. Neurophysiol. 20, 374–407 (1957).

    Article  CAS  Google Scholar 

  18. Mountcastle, V. B. J. Neurophysiol. 20, 408–434 (1957).

    Article  CAS  Google Scholar 

  19. Mountcastle, V. B., Talbot, W. H., Sakata, H. & Hyvarinen, J. J. Neurophysiol. 32, 452–484 (1969).

    Article  CAS  Google Scholar 

  20. Hubel, D. H. & Wiesel, T. N. J. Physiol. Lond. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  21. Maunsell, J. H. R. & Gibson, J. R. N. J. Neurophysiol. 68, 1332–1344 (1992).

    Article  CAS  Google Scholar 

  22. Vaadia, E. et al. Nature 373, 515–518 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Gabbot, P. L. A. & Stewart, M. G. Neuroscience 21, 833–845 (1987).

    Article  Google Scholar 

  24. Grannam, E. R., Kleinfeld, D. & Sompolinsky, H. Neural. Computat. 5, 550–569 (1993).

    Article  Google Scholar 

  25. Murthy, V. N. & Fetz, E. E. Neural Comput. 6, 1111–1126 (1994).

    Article  Google Scholar 

  26. Bernander, O., Koch, C. & Usher, M. Neural Computat. 6, 622–641 (1994).

    Article  Google Scholar 

  27. Lehmann, E. L. Nonparametrics: Statistical Methods Based on Ranks (Holden-Day, San Francisco 1975).

    MATH  Google Scholar 

  28. Efron, B. The Jackknife, The Bootstrap, and Other Resampling Plans 75–87 (Society for Industrial and Applied Mathematics, Philadelphia, 1982).

    MATH  Google Scholar 

  29. Perkel, D. H., Gerstein, G. L. & Moore, G. P. Biophys. J. 7, 419–440 (1967).

    Article  CAS  Google Scholar 

  30. Aertsen, A. M., Gerstein, G. L., Habib, M. K. & Palm, G. J. Neurophysiol 61, 900–917 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

deCharms, R., Merzenich, M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, 610–613 (1996). https://doi.org/10.1038/381610a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381610a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing