Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distinct components of spatial learning revealed by prior training and NMDA receptor blockade

Abstract

SYNAPTIC plasticity dependent on N-methyl-D-aspartate (NMDA) receptors is thought to underlie certain types of learning and memory1–3. In support of this, both hippocampal long-term potentiation and spatial learning in a watermaze are impaired by blocking NMDA receptors with a selective antagonist D(-)-2-amino-5-phosphonovaleric acid (AP5)4 or by a mutation in one of the receptor subunits5. Here we report, however, that the AP5-induced learning deficit can be almost completely prevented if rats are pretrained in a different watermaze before administration of the drug. This is not because of stimulus generalization, and occurs despite learning of the second task remaining hippocampus dependent. An A PS5-induced learning deficit is, however, still seen if the animals are pretrained using a non-spatial task. Thus, despite its procedural simplicity, the watermaze may involve multiple cognitive processes with distinct pharmacological properties; although required for some component of spatial learning, NMDA receptors may not be required for encoding the spatial representation of a specific environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  2. Morris, R. G. M. In Excitatory Amino Acids in Health and Disease (ed. Lodge, D.) 297–320 (Wiley, Chichester, 1988).

    Google Scholar 

  3. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Morris, R. G. M., Anderson, E., Lynch, G. & Baudry, M. Nature 319, 774–776 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Sakimura, K. et al. Nature 373, 151–155 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Davis, S., Butcher, S. P. & Morris, R. G. M. J. Neurosci. 12, 21–34 (1992).

    Article  CAS  Google Scholar 

  7. Morris, R. G. M. J. Neurosci. 9, 3040–3057 (1989).

    Article  CAS  Google Scholar 

  8. Salt, T. E. Nature 322, 263–265 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Sillito, A. M., Murphy, P. C. & Salt, T. E. Neuroscience 34, 273–280 (1990).

    Article  CAS  Google Scholar 

  10. Fox, K., Sato, H. & Daw, N. J. Neurophysiol. 64, 1413–1428 (1990).

    Article  CAS  Google Scholar 

  11. Alford, S. & Brodin, L. In The NMDA Receptor 2nd edn (eds Collingridge, G. L. & Watkins, J. C.) 277–293 (Oxford Univ. Press. 1994).

    Google Scholar 

  12. Heale, V. & Harley, C. Pharmac. Biochem. Behav. 36, 145–149 (1990).

    Article  CAS  Google Scholar 

  13. Caramanos, Z. & Shapiro, M. L. Behav. Neurosci. 108, 30–43 (1994).

    Article  CAS  Google Scholar 

  14. Jarrard, L. E. J. Neurosci. Meth. 29, 251–259 (1989).

    Article  CAS  Google Scholar 

  15. Squire, L. R. Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  Google Scholar 

  16. Kolb, B., Sutherland, R. J. & Whishaw, I. Q. Behav. Neurosci. 97, 13–27 (1983).

    Article  CAS  Google Scholar 

  17. DiMattia, B. D. & Kesner, R. P. Behav. Neurosci. 102, 471–480 (1988).

    Article  CAS  Google Scholar 

  18. Sutherland, R. J., Whishaw, I. Q. & Kolb, B. J. Neurosci. 8, 1863–1872 (1988).

    Article  CAS  Google Scholar 

  19. Brandeis, R., Brandys, Y. & Yehuda, S. Int. J. Neurosci. 48, 29–69 (1989).

    Article  CAS  Google Scholar 

  20. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).

    Google Scholar 

  21. Johnston, D., Williams, S. H., Jaffe, D. & Gray, R. A. Rev. Physiol. 54, 489–505 (1992).

    Article  CAS  Google Scholar 

  22. Wilson, M. A. & McNaughton, B. L. Science 261, 1055–1058 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Barnes, C. A. et al. J. Neurosci. 14, 5793–5806 (1994).

    Article  CAS  Google Scholar 

  24. Sutherland, N. S. & Mackintosh, N. J. Mechanisms of Animal Discrimination Learning (Academic, London, 1970).

    Google Scholar 

  25. Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O'Keefe, J. Nature 297, 681–683 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Johnson-Laird, P. N. Mental Models (Cambridge Univ. Press. 1983).

    Google Scholar 

  27. Butcher, S. P., Hamberger, A. & Morris, R. G. M. Expl Brain Res. 83, 521–526 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannerman, D., Good, M., Butcher, S. et al. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378, 182–186 (1995). https://doi.org/10.1038/378182a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378182a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing