Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Record of emergent continental crust 3.5 billion years ago in the Pilbara craton of Australia

Abstract

ISOTOPIC data for the Earth's oldest rocks1–7 imply that a considerable volume of continental crust existed during the early Archaean aeon (>3.0 Gyr ago), but it is not known when this crust first began to form emergent landmasses. Sedimentary geochemistry suggests8,9that the area of exposed continent was negligible until late in the Archaean10, a contention supported by the fact that, until now, all greenstone supracrustal volcanic and sedimentary successions shown to have been deposited on eroded continental basement have yielded ages of 3.0 Gyr. Here we report the discovery of an angular unconformity (an ancient erosion surface) beneath rocks of the 3.46-Gyr Warrawoona Group in the Pilbara craton of Australia, currently the oldest known well-preserved greenstone succession. Below the unconformity, low-grade greenstones older than 3.5 Gyr were intruded by voluminous granitoids before erosion. As the overlying Warrawoona rocks are only mildly metamorphosed, slightly deformed and were deposited near sea level, we infer that they accumulated on crust that was already rigid, cool and buoyant. Thus, by 3.46 Gyr ago, the sub-Warrawoona rocks formed an emergent block of continental crust, the most ancient known.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacobsen, S. B. & Dymed, R. F. J. geophys. Res. 93, 338–354 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Bowring, S. A., King, J. E., Housh, T. B., Isachsen, C. E. & Podosek, F. A. Nature 340, 222–225 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Bennett, V. C., Nutman, A. P. & McCulloch, M. T. Earth planet. Sci. Lett. 119, 299–317 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Froude, D. O. et al. Nature 304, 616–618 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Compston, W. & Pidgeon, R. T. Nature 321, 766–769 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Myers, J. S. Precambr. Res. 38, 297–307 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Nutman, A. P. & Collerson, K. D. Geology 19, 791–794 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Taylor, S. R. & McLennan, S. M. The Continental Crust: its Composition and Evolution (Blackwell, Oxford, 1985).

    Google Scholar 

  9. Stevenson, R. K. & Patchett, P. J. Geochim. cosmochim. Acta 54, 1683–1697 (1990).

    Article  ADS  CAS  Google Scholar 

  10. McCulloch, M. T. & Bennett, V. C. Geochim. cosmochim. Acta. 58, 4717–4738 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Bickle, M. J., Nisbet, E. G. & Martin, A. J. Geol. 102, 121–138 (1994).

    Article  ADS  Google Scholar 

  12. DiMarco, M. J. & Lowe, D. R. Precambr. Res. 44, 147–169 (1989).

    Article  ADS  CAS  Google Scholar 

  13. DiMarco, M. J. & Lowe, D. R. Sedimentology 36, 821–836 (1989).

    Article  ADS  Google Scholar 

  14. Lowe, D. R. Precambr. Res. 19, 239–283 (1983).

    Article  ADS  Google Scholar 

  15. Hickman, A. H. Bull. geol. Surv. W. Aust. 127, 1–167 (1983).

    Google Scholar 

  16. Buick, R. & Barnes, K. R. Publs Geol. Dept. Extension Service Univ. West. Aust. 9, 37–53 (1984).

    Google Scholar 

  17. Compston, W., Williams, I. S. & Meyer, C. J. geophys. Res. Suppl. 89, B525–B534 (1984).

    Article  ADS  Google Scholar 

  18. Williams, I. S. & Claesson, S. Contr. Miner. Petrol. 97, 205–217 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Jaffrey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Phys. Rev. C4, 1889–1906 (1971).

    ADS  Google Scholar 

  20. Thorpe, R. I., Hickman, A. H., Davis, D. W., Mortensen, J. K. & Trendall, A. F. Precambr. Res. 56, 169–189 (1992).

    Article  ADS  CAS  Google Scholar 

  21. McNaughton, N. J., Compston, W. & Barley, M. E. Precambr. Res. 60, 69–98 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Bickle, M. J. et al. Precambr. Res. 60, 117–149 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Krapez, B. Precambr. Res. 60, 1–45 (1993).

    Article  ADS  Google Scholar 

  24. Barley, M. E. Precambr. Res. 60, 47–67 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Jacobsen, S. B. Earth planet. Sci. Lett. 90, 315–329 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buick, R., Thornett, J., McNaughton, N. et al. Record of emergent continental crust 3.5 billion years ago in the Pilbara craton of Australia. Nature 375, 574–577 (1995). https://doi.org/10.1038/375574a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375574a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing