Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Comb-type grafted hydrogels with rapid deswelling response to temperature changes

Abstract

MANY polymeric hydrogels undergo abrupt changes in volume in response to external stimuli such as changes in solvent composition1, pH2, electric field3 and temperature4–6. For several of the potential applications of these materials, such as 'smart' actuators, a fast response is needed. The kinetics of swelling and de-swelling in these gels are typically governed by diffusion-limited transport of the polymeric components of the network in water, the rate of which is inversely proportional to the square of the smallest dimension of the gel7–9. Several strategies have been explored for increasing the response dynamics10–14, such as introducing porosity14. Here we show that we can induce rapid de-swelling of a polymer hydrogel by tailoring the gel architecture at the molecular level. We prepare a crosslinked hydrogel in which the polymer chains bear grafted side chains; the latter create hydrophobic regions, aiding the expulsion of water from the network during collapse. Whereas similar gels lacking the grafted side chains can take more than a month to undergo full de-swelling, our materials collapse in about 20 minutes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hirokawa, E. & Tanaka, T. J. chem. Phys. 81, 6379–6380 (1984).

    Article  ADS  Google Scholar 

  2. Tanaka, T. et al. Phys. Rev. Lett. 45, 1636–1639 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Tanaka, T., Nishio, I., Sun, S.-T. & Ueno-Nishio, S. Science 218, 467–469 (1981).

    Article  ADS  Google Scholar 

  4. Okano, T., Yui, N., Yokoyama, M. & Yoshida, R. in Japanese Technology Reviews Section E Vol. 4 (eds Ikoma, T. et al.) 67–105 (Gordon Science, Yverdon, Switzerland, 1993).

    Google Scholar 

  5. Hoffman, A. S. J. Controlled Release 6, 297–305 (1987).

    Article  CAS  Google Scholar 

  6. Dusek, K. (ed.) Responsive Gels: Volume Transitions II (Springer, Berlin, 1993).

    Google Scholar 

  7. Tanaka, T. & Fillmore, D. J. J. chem. Phys. 70, 1214–1218 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Tanaka, T., Sato, E., Hirokawa, Y., Hirotsu, S. & Peetermans, J. Phys. Rev. Lett. 55, 2455–2458 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Sato Matsuo, E. & Tanaka, T. J. chem. Phys. 89, 1695–1703 (1988).

    Article  ADS  Google Scholar 

  10. Hirasa, O., Ito, S., Yamauchi, A., Fujishige, S. & Ichijo, H. in Polymer Gels (eds DeRossi, D. et al.) 247–256 (Plenum, New York, 1991).

    Book  Google Scholar 

  11. Suzuki, M. in Polymer Gels (eds De Rossi, D. et al.) 221–236 (Plenum, New York, 1991).

    Book  Google Scholar 

  12. Kabra, B. G. & Gehrke, S. H. Polym. Commun. 32, 322–323 (1991).

    CAS  Google Scholar 

  13. Wu, X. S., Hoffman, A. S. & Yager, P. J. Polym. Sci., A. Polym. Chem. 30, 2121–2129 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Dong, L. C. & Hoffman, A. S. J. Controlled Release 13, 21–31 (1990).

    Article  CAS  Google Scholar 

  15. Heskins, M., Guillet, J. E. & James, E. J. macromol. Sci. Chem. A2, 1441–1455 (1968).

    Article  CAS  Google Scholar 

  16. Bae, Y. H., Okano, T. & Kim, S. W. J. Polym. Sci. Polym. Phys. 28, 923–936 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Takei, Y. G. et al. Bioconj. Chem. 4, 341–346 (1993).

    Article  CAS  Google Scholar 

  18. Takei, Y. G. et al. Macromolecules 27, 6163–6166 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Yoshida, R., Sakai, K., Okano, T. & Sakurai, Y. J. Biomater. Sci. Polym. Edn 6, 585–598 (1994).

    Article  CAS  Google Scholar 

  20. Yoshida, R. et al. J. Biomater. Sci. Polym. Edn 3, 155–162 (1991).

    Article  CAS  Google Scholar 

  21. Yoshida, R., Sakai, K., Okano, T. & Sakurai, Y. J. Biomater. Sci. Polym. Edn 3, 243–252 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, R., Uchida, K., Kaneko, Y. et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374, 240–242 (1995). https://doi.org/10.1038/374240a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374240a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing