Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-assembling organic nanotubes based on a cyclic peptide architecture

A Correction to this article was published on 15 December 1994

Abstract

HOLLOW tubular structures of molecular dimensions may offer a variety of applications in chemistry, biochemistry and materials science. Concentric carbon nanotubes1,2 have attracted a great deal of attention, while the three-dimensional tubular pore structures of molecular sieves have long been exploited industrially3–8. Nanoscale tubes based on organic materials have also been reported previously9–13. Here we report the design, synthesis and characterization of a new class of organic nanotubes based on rationally designed cyclic polypeptides. When protonated, these compounds crystallize into tubular structures hundreds of nanometres long, with internal diameters of 7–8 Å. Support for the proposed tubular structures is provided by electron microscopy, electron diffraction, Fourier-transform infrared spectroscopy and molecular modelling. These tubes are open-ended, with uniform shape and internal diameter. We anticipate that they may have possible applications in inclusion chemistry, catalysis, molecular electronics and molecular separation technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lijima, S. Nature 354, 56–58 (1991).

    Article  ADS  Google Scholar 

  2. Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Meier, W. M. & Olson, D. H. Atlas of Zeolite Structure Types 2nd edn (Butterworths, London, 1988).

    Google Scholar 

  4. Dessau, R. M., Schlenker, J. L. & Higgins, J. B. Zeolites 10, 522–524 (1990).

    Article  CAS  Google Scholar 

  5. Davis, M. E., Saldarriaga, C., Montes, C., Garces, J. & Crowder, C. Nature 331, 698–699 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Estermann, M., McCusker, L. B., Baerlocher, C., Merrouche, A. & Kessler, H. Nature 352, 320–323 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Monnier, A. et al. Science 261, 1299–1303 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Lotz, B., Colonna-Cesari, F., Heitz, F. & Spach, G. J. molec. Biol. 106, 915–942 (1976).

    Article  CAS  Google Scholar 

  10. Georger, J. H. et al. J. Am. chem. Soc. 109, 6169–6175 (1987).

    Article  CAS  Google Scholar 

  11. Brumlik, C. J. & Martin, C. R. J. Am. chem. Soc. 113, 3174–3175 (1991).

    Article  CAS  Google Scholar 

  12. Fuhrhop, J.-H., Spiroski, D. & Boettcher, C. J. Am. chem. Soc. 115, 1600–1601 (1993).

    Article  CAS  Google Scholar 

  13. Harada, A., Li, J. & Kamachi, M. Nature 364, 516–518 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Salemme, F. R. Prog. Biophys. molec. Biol. 42, 95–133 (1983).

    Article  CAS  Google Scholar 

  15. Stickle, D. F., Presta, L. G., Dill, K. A. & Rose, G. D. J. molec. Biol. 226, 1143–1159 (1992).

    Article  CAS  Google Scholar 

  16. McRee, D. E. J. Molec. Graphics 10, 44–46 (1992).

    Article  Google Scholar 

  17. Brunger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Krimm, S. & Bandekar, J. in Advances in Protein Chemistry (eds Anfinsen, C. B., Edsall, J. T. & Richards, F. M.) 181–364 (Academic, Orlando, 1986).

    Google Scholar 

  19. Wallace, B. A. & Ravikumar, K. Science 241, 182–187 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Langs, D. A. Science 241, 188–191 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Naik, V. M. & Krimm, S. Biophys. J. 49, 1147–1154 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Science 254, 1312–1319 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Ozin, G. A. Adv. Mater. 4, 612–649 (1992).

    Article  CAS  Google Scholar 

  24. Rovero, P., Quartara, L. & Fabbri, G. Tetrahedron Lett. 32, 2639–2642 (1991).

    Article  CAS  Google Scholar 

  25. Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. Nature 308, 32–36 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Milligan, R. A., Brisson, A. & Unwin, P. N. T. Ultramicroscopy 13, 1–10 (1984).

    Article  CAS  Google Scholar 

  27. Schroeter, J. P. et al. J. Struct. Biology 109, 235–247 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghadiri, M., Granja, J., Milligan, R. et al. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993). https://doi.org/10.1038/366324a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366324a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing