Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correlations between climate records from North Atlantic sediments and Greenland ice

Abstract

OXYGEN isotope measurements in Greenland ice demonstrate that a series of rapid warm-cold oscillations—called Dansgaard–Oeschger events—punctuated the last glaciation1. Here we present records of sea surface temperature from North Atlantic sediments spanning the past 90 kyr which contain a series of rapid temperature oscillations closely matching those in the ice-core record, confirming predictions that the ocean must bear the imprint of the Dansgaard–Oeschger events2,3. Moreover, we show that between 20 and 80 kyr ago, the shifts in ocean-atmosphere temperature are bundled into cooling cycles, lasting on average 10 to 15 kyr, with asymmetrical saw-tooth shapes. Each cycle culminated in an enormous discharge of icebergs into the North Atlantic (a 'Hein-rich event'4,5), followed by an abrupt shift to a warmer climate. These cycles document a previously unrecognized link between ice sheet behaviour and ocean–atmosphere temperature changes. An important question that remains to be resolved is whether the cycles are driven by external factors, such as orbital forcing, or by inter-nal ice-sheet dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dansgaard, W. et al. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  2. Broecker, W. S. et al. Quat. Res. 30, 1–6 (1988).

    Article  Google Scholar 

  3. Broecker, W. S., Bond, G. & Klas, M. Paleoceanogr. 5(4), 469–477 (1990).

    Article  ADS  Google Scholar 

  4. Bond, G. et al. Nature 360, 245–249 (1992).

    Article  ADS  Google Scholar 

  5. Broecker, W. S., Bond, G., Klas, M., Clark, E. & McManus, J. Clim. Dynamics 6, 265–273 (1992).

    Article  ADS  Google Scholar 

  6. Bé, A. W. H. & Tolderlund, D. S. Micropaleontology of Oceans (eds Funnell, B. M. & Riedel, W. R.) 105–149 (Cambridge Univ. Press, 1971).

    Google Scholar 

  7. Kellogg, T. B. Boreas 9, 115–137 (1980).

    Article  Google Scholar 

  8. Broecker, W. S. Paleoceanogr. 3(1), 1–19 (1988).

    Article  ADS  Google Scholar 

  9. Lehman, S. J. & Keigwin, L. D. Nature 356, 757–762 (1992).

    Article  ADS  Google Scholar 

  10. Karpuz, N. C. & Jansen, E. Paleoceanogr. 7(4), 499–520 (1992).

    Article  ADS  Google Scholar 

  11. Bond, G., Broecker, W., Lotti, R. & McManus, J. in Start of a Glacial (eds Kukla, G. J. & Went, E.) 185–205 (Springer, Berlin, 1992).

    Book  Google Scholar 

  12. Johnsen, S. J. et al. Nature 359, 311–313 (1992).

    Article  ADS  Google Scholar 

  13. Alley, R. B. et al. Nature 362, 527–529 (1993).

    Article  ADS  Google Scholar 

  14. Bard, E., Arnold, M., Fairbanks, R. G. & Hamelin, B. Radiocarbon 3(1), 191–199 (1993).

    Article  Google Scholar 

  15. Martinson, D. G. et al. Quat. Res. 27, 1–29 (1987).

    Article  CAS  Google Scholar 

  16. Dansgaard, W., White, J. W. C. & Johnsen, S. J. Nature 339, 532–533 (1989).

    Article  ADS  Google Scholar 

  17. Taylor, K. C. et al. Nature 361, 432–436 (1993).

    Article  ADS  Google Scholar 

  18. Heinrich, H. Quat. Res. 29, 142–152 (1988).

    Article  Google Scholar 

  19. Ruddiman, W. F. & McIntyre, A. Paleogeogr. Palaeoclimatol. Palaeoecol. 35, 145–214 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Duplessy, J-C. Labeyrie, L., Juillet-LeClerc, A. & Duprat, J. in The Last Deglaciation: Absolute and Radiocarbon Chronologies (eds Bard, E. & Broecker, W. S.) 201–208 (Springer, Berlin, 1992).

    Book  Google Scholar 

  21. Andrews, J. T., Tedesco, K., Briggs, W. M. & Evans, L. W. Can. J. Earth Sci. (in the press).

  22. MacAyeal, D. R. Nature 359, 29–32 (1992).

    Article  ADS  Google Scholar 

  23. Ruddiman, W. F. in Northern America and Adjacent Oceans during the Last Deglaciation: The Geology of North America (eds Ruddiman, W. F. & Wright, H. E. Jr) 137–154 (Geol. Soc. of Am, Boulder, 1987).

    Google Scholar 

  24. Sancetta, C., Imbrie, J. & Kipp, N. G. Quat. Res. 3, 110–116 (1973).

    Article  Google Scholar 

  25. Woillard, G. & Mook, W. G. Science 215, 159–161 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Shakleton, N. J., Imbrie, J. & Hall, M. A. Earth planet. Sci. Lett. 65, 233–244 (1983).

    Article  ADS  Google Scholar 

  27. Bloom, A. L., Broecker, W. S., Chappell, J. M. A., Matthews, R. K. & Mesolella, K. J. Quat. Res. 4, 185–205 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, G., Broecker, W., Johnsen, S. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993). https://doi.org/10.1038/365143a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365143a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing