Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase

Abstract

Crystal structures of haloalkane dehalogenase were determined in the presence of the substrate 1,2-dichloroethane. At pH 5 and 4 °C, substrate is bound in the active site without being converted; warming to room temperature causes the substrate's carbon–chlorine bond to be broken, producing a chloride ion with concomitant alkylation of the active-site residue Asp124. At pH 6 and room temperature the alkylated enzyme is hydrolysed by a water molecule activated by the His289–Asp260 pair in the active site. These results show that catalysis by the dehalogenase proceeds by a two-step mechanism involving an ester intermediate covalently bound at Asp124.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Janssen, D. B., Scheper, A., Dijkhuizen, L. & Witholt, B. Appl. envir. Microbiol. 49, 673–677 (1985).

    CAS  Google Scholar 

  2. Keuning, S., Janssen, D. B. & Witholt, B. J. Bact. 163, 635–639 (1985).

    CAS  PubMed  Google Scholar 

  3. Janssen, D. B. et al. J. Bact. 171, 6791–6799 (1989).

    Article  CAS  Google Scholar 

  4. Franken, S. M., Rozeboom, H. J., Kalk, K. H. & Dijkstra, B. W. EMBO J. 10, 1297–1302 (1991).

    Article  CAS  Google Scholar 

  5. Ollis, D. L. et al. Protein Engng 5, 197–211 (1992).

    Article  CAS  Google Scholar 

  6. Sussman, J. L. et al. Science 253, 872–879 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Pathak, D. & Ollis, D. J. Molec. Biol. 214, 497–525 (1990).

    Article  CAS  Google Scholar 

  8. Liao, D.-I. & Remington, S. J. J. biol. Chem. 265, 6528–6531 (1990).

    CAS  PubMed  Google Scholar 

  9. Liao, D.-I., Breddam, K., Sweet, R. M., Bullock, T. & Remington, S. J. Biochemistry 31, 9796–9812 (1992).

    Article  CAS  Google Scholar 

  10. Schrag, J. D., Li, Y., Wu, S. & Cygler, M. Nature 351, 761–764 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Janssen, D. B. et al. Eur. J. Biochem. 171, 67–72 (1988).

    Article  CAS  Google Scholar 

  12. Rozeboom, H. J., Kingma, J., Janssen, D. B. & Dijkstra, B. W. J. molec. Biol. 200, 611–612 (1988).

    Article  CAS  Google Scholar 

  13. Froede, H. C. & Wilson, I. B. J. biol. Chem. 259, 11010–11013 (1984).

    CAS  PubMed  Google Scholar 

  14. Douglas, K. T., Nakagawa, Y. & Kaiser, E. T. J. Am. chem. Soc. 98, 8231–8236 (1976).

    Article  CAS  Google Scholar 

  15. Hol, W. G. J., van Duijnen, P. T. & Berendsen, H. J. C. Nature 273, 443–446 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Hol, W. G. J. Prog. Biophys. molec.. Biol. 45, 149–195 (1985).

    Article  CAS  Google Scholar 

  17. Kraut, J. A. Rev. Biochem. 46, 331–358 (1977).

    Article  CAS  Google Scholar 

  18. McPhalen, C. A. & James, M. N. G. Biochemistry 27, 6582–6598 (1988).

    Article  CAS  Google Scholar 

  19. Hajdu, J. et al. Nature 329, 178–181 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Singer, P. T., Smalas, A., Carty, R. P., Mangel, W. F. & Sweet, R. M. Science 259, 669–673 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Strynadka, N. C. J. et al. Nature 359, 700–705 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Messerschmidt, A. & Pflugrath, J. W. J. appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  23. Kabsch, W. J. appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  24. Hamilton, W. C., Rollet, J. S. & Sparks, R. A. Acta crystaltogr. 18, 129–130 (1965).

    Article  Google Scholar 

  25. Read, R. Acta crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  26. Tronrud, D. E., ten Eyk, L. F. & Matthews, B. W. Acta crystallogr. A43, 489–501 (1987).

    Article  CAS  Google Scholar 

  27. Verschueren, K. H. G., Franken, S. M., Rozeboom, H. J., Kalk, K. H. & Dijkstra, B. W. J. molec. Biol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verschueren, K., Seljée, F., Rozeboom, H. et al. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363, 693–698 (1993). https://doi.org/10.1038/363693a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363693a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing