Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Curling and closure of graphitic networks under electron-beam irradiation

Abstract

THE discovery1 of buckminsterfullerene (C60) and its production in macroscopic quantities2 has stimulated a great deal of research. More recently, attention has turned towards other curved graphitic networks, such as the giant fullerenes (Cn, n > 100)3,4 and carbon nanotubes5–8. A general mechanism has been proposed9 in which the graphitic sheets bend in an attempt to eliminate the highly energetic dangling bonds present at the edge of the growing structure. Here, I report the response of carbon soot particles and tubular graphitic structures to intense electron-beam irradiation in a high-resolution electron microscope; such conditions resemble a high-temperature regime, permitting a degree of structural fluidity. With increased irradiation, there is a gradual reorganization of the initial material into quasi-spherical particles composed of concentric graphitic shells. This lends weight to the nucleation scheme proposed9 for fullerenes, and moreover, suggests that planar graphite may not be the most stable allotrope of carbon in systems of limited size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–163 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. Nature 347, 354–358 (1990).

    Article  ADS  Google Scholar 

  3. Kroto, H. W. & McKay, K. Nature 331, 328–331 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Lamb, L. D. et al. Science 255, 1413–1416 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Iijima, S. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Mintimire, J. W., Dunlap, B. I. & White, C. T. Phys. Rev. Lett. 68, 631–634 (1992).

    Article  ADS  Google Scholar 

  7. Hamada, N., Sawada, S. & Oshiyama, A. Phys. Rev. Lett. 68, 1579–1581 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Tanaka, K., Okahara, K., Okada, M. & Yamade, T. Chem. Phys. Lett. 191, 469–472 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Zhang, Q. L. et al. J. phys. Chem. 90, 525–528 (1986).

    Article  CAS  Google Scholar 

  10. Kroto, H. W. Nature 329, 529–531 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Bundy, F. P. Physica A156, 169–178 (1989).

    Article  CAS  Google Scholar 

  12. Robertson, D. H., Brenner, D. W. & White, C. T. J. phys. Chem. 96, 6133–6135 (1992).

    Article  CAS  Google Scholar 

  13. Chai, Y. et al. J. phys. Chem. 95, 7564–7568 (1991).

    Article  CAS  Google Scholar 

  14. Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Curl, R. F. & Smalley, R. E. Scient. Am. 265, 32–41 (October, 1991).

    Article  Google Scholar 

  16. Iijima, S. J. Cryst. Growth 50, 657–683 (1980).

    Article  Google Scholar 

  17. Iijima, S. J. phys. Chem. 91, 3466–3467 (1987).

    Article  CAS  Google Scholar 

  18. Adams, G. B., Sankey, O. F., Page, J. B., O'Keeffe, M. & Drabold, D. A. Science 256, 1792–1795 (1992).

    Article  ADS  Google Scholar 

  19. Scuseria, G. E. in Buckminsterfullerene (eds Billups, W. E. & Ciufolini, M. A.) (VCH, New York, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992). https://doi.org/10.1038/359707a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359707a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing