Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution

Abstract

LARGE, rapidly sinking organic aggregates are an important component of the carbon flux from the ocean's surface to its depths. Marine snow, the main type of large (<0.5 mm) aggregate, is heavily colonized by bacteria in surface waters1, yet the carbon demand of the attached bacteria is so small that months to years are required to consume the aggregates' carbon2–5. This has led to the conclusion that marine aggregates are resistant to degradation by attached bacteria, and thus act as refractory carriers of carbon to the deep ocean. Here we report that aggregates play host to intense activities of hydrolytic enzymes (presumably due to cell surface bound and released enzymes of the attached bacteria), which render the aggregates soluble. Particulate amino acids were hydrolysed rapidly (turnover time 0.2–2.1 days), with very little of the hydrolysate being taken up by the attached bacteria. Our results support the hypothesis6,7 that such 'uncoupled' hydrolysis is a biochemical mechanism for large-scale transfer of organic matter from sinking particles to the dissolved phase, and may supply the slowly degradable dissolved organic matter for downward export postulated by recent models8–10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alldredge, A. L. & Gotschalk, C. C. Cont. Shelf Res. 10, 41–58 (1990).

    Article  ADS  Google Scholar 

  2. Ducklow, H. W., Kirchman, D. L. & Rowe, G. T. Appl. envir. Microbiol. 43, 769–776 (1982).

    CAS  Google Scholar 

  3. Alldredge, A. & Youngbluth, M. Deep Sea Res. 32, 1445–1456 (1985).

    Article  ADS  Google Scholar 

  4. Karl, D. M., Knauer, G. A. & Martin, J. H. Nature 332, 438–441 (1988).

    Article  ADS  Google Scholar 

  5. Simon, M., Alldredge, A. L. & Azam, F. Mar. Ecol. Prog. Ser. 65, 205–211 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Azam, F. The Radioecological Role of Marine Bacterioplankton 1–2–7 (Institut Royal des Sciences Naturelles de Belgique, Brussels, 1984).

    Google Scholar 

  7. Cho, B. C. & Azam, F. Nature 332, 441–443 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Sarmiento, J. L., Toggweiler, J. R. & Najjar, R. Phil. Trans. R. Soc. Lond. 325, 3–21 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Bacastow, R. & Maier-Reimer, E. Global biogeochem. Cycles 5, 71–85 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Najjar, R. G., Sarmiento, J. L. & Toggweiler, J. R. Global biogeochem. Cycles 6, 45–76 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Honjo, S., Doherty, K. W., Agrawal, Y. C. & Asper, V. L. Deep Sea Res. 31, 67–76 (1984).

    Article  ADS  Google Scholar 

  12. Hoppe, H.-G. Mar. Ecol. Prog. Ser. 11, 299–308 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Kirchman, D., K'Nees, E. & Hodson, R. Appl. envir. Microbiol. 49, 599–607 (1985).

    CAS  Google Scholar 

  14. Simon, M. & Azam, F. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Caron, D. A. Microb. Ecol. 13, 203–218 (1987).

    Article  CAS  Google Scholar 

  16. Eppley, R. W. & Holm-Hansen, O. in Plankton Dynamics of the Southern California Bight (ed. Eppley, R. W.) 176–215 (Springer, Berlin, 1986).

    Google Scholar 

  17. Suess, E. Nature 288, 260–263 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. Deep Sea Res. 34, 267–285 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Wakeham, S. G., Lee, C., Farrington, J. W. & Gagosian, R. B. Deep Sea Res. 31, 509–528 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Amy, P. S., Caldwell, B. A., Soeldner, A. H., Morita, R. Y. & Albright, L. J. Can. J. fish. aquat. Sci. 44, 1135–1142 (1987).

    Article  Google Scholar 

  21. Billen, G. in Microbial Enzymes in Aquatic Environments (ed. Chrost, R. J.) 123–143 (Springer, New York, 1991).

    Book  Google Scholar 

  22. Hoppe, H.-G., Kim, S.-J. & Gocke, K. Appl. Envir. Microbiol. 54, 784–790 (1988).

    CAS  Google Scholar 

  23. Proctor, L. M. & Fuhrman, J. A. Nature 343, 60–62 (1990).

    Article  ADS  Google Scholar 

  24. McCave, I. N. Deep Sea Res. 31, 329–352 (1984).

    Article  ADS  Google Scholar 

  25. Koike, I., Shigemitsu, H., Kazuki, T. & Kogure, K. Nature 345, 242–244 (1990).

    Article  Google Scholar 

  26. Longhurst, A. R. et al. Deep Sea Res. 39, 1–7 (1992).

    Article  ADS  Google Scholar 

  27. Bjørnsen, P. K. Mar. Ecol. Prog. Ser. 30, 191–196 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D., Simon, M., Alldredge, A. et al. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142 (1992). https://doi.org/10.1038/359139a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359139a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing