Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12

Abstract

FKBP12, a cis–trans prolyl isomerase that binds the immunosuppressants FK506 and rapamycin, is ubiquitouslyexpressed and interacts with proteins in several intracellular signal transduction systems1.Although FKBP12 interacts with the cytoplasmic domains of type I receptors of the transforming growth factor-β(TGF-β) superfamily in vitro, the function of FKBP12 in TGF-β superfamily signalling iscontroversial2,3,4,5,6. FKBP12 also physicallyinteracts stoichiometrically with multiple intracellular calcium release channels including the tetrameric skeletal muscle ryanodine receptor(RyR1)7,8. In contrast, the cardiacryanodine receptor, RyR2, appears to bind selectively theFKBP12 homologue, FKBP12.6 (9, 10). To define the functions of FKBP12 in vivo, we generated mutantmice deficient in FKBP12 using embryonic stem (ES) cell technology. FKBP12-deficient mice have normal skeletal muscle buthave severe dilated cardiomyopathy and ventricular septal defects that mimic a human congenital heart disorder, noncompaction of leftventricular myocardium11,12. About 9% of themutants exhibit exencephaly secondary to a defect in neural tube closure. Physiological studies demonstrate that FKBP12 is dispensable forTGF-β-mediated signalling, but modulates the calcium release activity of both skeletal and cardiac ryanodinereceptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of FKBP12-deficient mice.
Figure 2: Cardiac and liver analysis of wild-type and FKBP12-deficient mutants.
Figure 3: Analysis of wild-type and FKBP12 exencephaly mutants.
Figure 4: Cardiac performance of adult mice.
Figure 5: FKBP12 is not essential for TGF-β-mediated signalling.
Figure 6: Single channel tracings of skeletal RyR1 (a, b) or cardiac RyR2 (c, d) reconstituted into planar lipid bilayers.

Similar content being viewed by others

References

  1. Snyder, S. H. & Sabatini, D. M. Immunophilins and the nervous system. Nature Med. 1, 32–37 (1995).

    Article  CAS  Google Scholar 

  2. Wang, T.et al. The immunophilin FKBP12 functions as a common inhibitor of the TGFβ family type I receptors. Cell 86, 435–444 (1996).

    Article  CAS  Google Scholar 

  3. Chen, Y.-G., Liu, F. & Massagué, J. Mechanisms of TGFβ receptor inhibition by FKBP12. EMBO 13, 3866–3876 (1997).

    Article  Google Scholar 

  4. Charng, M.-J., Kinnunen, P., Hawker, J., Brand, T. & Schneider, M. D. FKBP12 recognition is dispensable for signal generation by type I transforming growth factor-β receptors. J. Biol. Chem. 271, 22941–22944 (1996).

    Article  CAS  Google Scholar 

  5. Okadome, T.et al. Characterization of the interaction of FKBP12 with the transforming growth factor-β type 1 receptor in vivo. J. Biol. Chem. 271, 21687–21690 (1996).

    Article  CAS  Google Scholar 

  6. Zimmerman, C. M. & Mathews, L. S. Activin receptors: cellular signalling by receptor serine kinases. Biochem. Soc. Symp. 62, 25–38 (1996).

    CAS  PubMed  Google Scholar 

  7. Jayaraman, T.et al. FK506-binding protein associated with the calcium release channel (ryanodine receptor). J. Biol. Chem. 267, 9474–9477 (1992).

    CAS  PubMed  Google Scholar 

  8. Brillantes, A. B.et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513–523 (1994).

    Article  CAS  Google Scholar 

  9. Timerman, A. P.et al. Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J. Biol. Chem. 271, 20385–20391 (1996).

    Article  CAS  Google Scholar 

  10. Lam, E.et al. Anovel FK506 binding protein can mediate the immunosuppressive effects of FK506 and is associated with the cardiac ryanodine receptor. J. Biol. Chem. 270, 26511–26522 (1995).

    Article  CAS  Google Scholar 

  11. Chin, T. K., Perlof, J. K., Williams, R. G., Jue, K. & Mohrmann, T. Isolated noncompaction of left ventricular myocardium, a study of eight cases. Circulation 82, 507–513 (1990).

    Article  CAS  Google Scholar 

  12. Ritter, M.et al. Isolated noncompaction of the myocardium in adults. Mayo Clin. Proc. 72, 26–31 (1997).

    Article  CAS  Google Scholar 

  13. Van Duyne, G. D., Standaert, R. F., Karplus, P. A. & Schrieber, S. L. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science 252, 839–842 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Rossant, J. Mouse mutants and cardiac development, new molecular insights into cardiogenesis. Circ. Res. 78, 349–353 (1996).

    Article  CAS  Google Scholar 

  15. Olson, E. N. & Srivastava, D. Molecular pathways controlling heart development. Science 272, 671–676 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Chen, Z.-F. & Behringer, R. R. Twist is required in head mesenchyme for cranical neural tube morphogenesis. Genes Dev. 9, 686–699 (1995).

    Article  CAS  Google Scholar 

  17. Zhao, Q., Behringer, R. R. & Crombrugghe, B. Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nature Genet. 13, 275–283 (1996).

    Article  CAS  Google Scholar 

  18. Lau, A. L., Shou, W., Guo, Q. & Matzuk, M. M. in Inhibin, Activin and Follistatin (eds Aono, T., Sugino, H. & Vale, W. W.) 220–243 (Springer, New York, 1997).

    Book  Google Scholar 

  19. Tanaka, N.et al. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 94, 1109–1117 (1996).

    Article  CAS  Google Scholar 

  20. Arber, A.et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    Article  CAS  Google Scholar 

  21. Lamb, G. D. & Stephenson, D. G. Effects of FK506 and rapamycin on excitation-contraction coupling in skeletal muscle fibers in the rat. J. Physiol. 494, 569–576 (1996).

    Article  CAS  Google Scholar 

  22. Takeshima, H.et al. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature 369, 556–559 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Atkison, P.et al. Hypertrophic cardiomyopathy associated with tacrolimus in paediatric transplant patients. Lancet 345, 894–896 (1995).

    Article  CAS  Google Scholar 

  24. Okata, K.et al. The role of an immunophilin, FKBP12, in chick embryonic cardiac development. Circulation 94(suppl. 1) 1–120 (1996).

    Article  Google Scholar 

  25. Näbauar, M., Callewaert, G., Cleemann, L. & Morad, M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800–803 (1989).

    Article  ADS  Google Scholar 

  26. Rowe, L. B.et al. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mammal. Genome 5, 253–274 (1994).

    Article  CAS  Google Scholar 

  27. Dilella, A. G., Hawkins, A., Craig, R. J., Schreiber, S. L. & Griffin, C. A. Chromosomal band assignments of the genes encoding human FKBP12 and FKBP12.6. Biochem. Biophys. Res. Commun. 189, 819–823 (1992).

    Article  CAS  Google Scholar 

  28. Bradley, A. Teratocarcinomas and Embryonic Stem Cells: a Practical Approach (ed. Robinson, E. J.) 113–151 (IRL, Oxford, 1987).

    Google Scholar 

  29. Albrecht, U., Eichele, G., Helms, J. A. & Lu, H.-C. in Molecular and Cellular Methods in Developmental Toxicology (ed. Daston, G. P.) 23–48 (CRC, Boca Raton, 1997).

    Google Scholar 

  30. Aghdasi, B., Zhang, J.-Z., Wu, Y., Reid, M. & Hamilton, S. L. Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel. J. Biol. Chem. 272, 3739–3748 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Kearney and M. Finegold for their expert opinions on the cardiac and liver pathology, J. Towbin for advice on congenital heart disease, K. Kurrelmeyer, T. Pham and G. Taffet for aid in echocardiographic analysis, J. Barrish for aid in electron microscopic analysis, S. Schreiber for the anti-FKBP12 antibody, J. Massagué for the p3TP-lux plasmid, J.-Z. Zhang for aid in sarcoplasmic reticulum membrane preparation, S. Li for statistical help, T. R. Kumar and J. Towbin for their critical reading of the manuscript and S. Baker for aid in manuscript preparation. These studies were supported in part by National Institutes of Health grants (to M.M.M., S.L.H., M.D.S. and L.S.M.) and a Muscular Dystrophy Association grant (to S.L.H.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shou, W., Aghdasi, B., Armstrong, D. et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391, 489–492 (1998). https://doi.org/10.1038/35146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35146

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing