Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An unusually massive stellar black hole in the Galaxy

Abstract

The X-ray source known as GRS1915+105 belongs to a group dubbed ‘microquasars’1,2. These objects are binary systems which sporadically eject matter at speeds that appear superluminal, as is the case for some quasars. GRS1915+105 is also one of only two known binary sources thought to contain a maximally spinning black hole3. Determining the basic parameters of GRS195+105, such as the masses of the components, will help us to understand jet formation in this system, as well as providing links to other objects which exhibit jets. Using X-ray data, indirect methods4,5 have previously been used to infer a variety of masses for the accreting compact object in the range 10–30 solar masses (M). Here we report a direct measurement of the orbital period and mass function of GRS1915+105, which allow us to deduce a mass of 14 ± 4 M for the black hole. Black holes with masses >5–7 M challenge the conventional picture of black-hole formation in binary systems6,7,8,9. Based on the mass estimate, we interpret the distinct X-ray variability of GRS1915+105 as arising from instabilities in an accretion disk that is dominated by radiation pressure, and radiating near the Eddington limit (the point where radiation pressure supports matter against gravity). Also, the mass estimate constrains most models which relate observable X-ray properties to the spin of black holes in microquasars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean K-band spectrum of GRS1915+105.
Figure 2: Period analysis of the velocity variation of the four CO band heads.
Figure 3: Black-hole mass constraints for GRS1915+105.

Similar content being viewed by others

References

  1. Mirabel, I. F. & Rodriguez, L. F. Microquasars in our Galaxy. Nature 392, 673–676 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Greiner, J. Microquasars in Cosmic Explosions, Proc. 10th Annu. Astrophys. Conf. (eds Holt, S. & Zhang, W. W.) 307–316 (AIP 522, American Institute of Physics, Melville, New York, 2000).

    Google Scholar 

  3. Zhang, N. S., Cui, W. & Chen, W. Black hole spin in X-ray binaries: Observational consequences. Astrophys. J. 482, L155–L158 (1997).

    Article  ADS  Google Scholar 

  4. Greiner, J., Morgan, E. H. & Remillard, R. A. RXTE Spectroscopy of GRS 1915+105. In Galactic Sources with Relativistic Jets (eds Ogley, R. N. & Bell Burnell, J.) New Astr. Rev. 42, 597–600 (1998).

    Article  ADS  Google Scholar 

  5. Morgan, E. H., Remillard, R. A. & Greiner, J. RXTE observations of QPOs in the black hole candidate GRS 1915+105. Astrophys. J. 482, 993–1010 (1997).

    Article  ADS  Google Scholar 

  6. Brown, G. E., Lee, C.-H. & Bethe, H. A. The formation of high-mass black holes in low-mass X-ray binaries. New Astron. 4, 313–323 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Wellstein, S. & Langer, N. Implications of massive close binaries for black hole formation and supernovae. Astron. Astrophys. 350, 148–162 (1999).

    ADS  CAS  Google Scholar 

  8. Brown, G. E., Lee, C.-H. & Tauris, T. M. Formation and evolution of black hole X-ray transient systems. New Astron. 6(7), 457–470 (2001).

    Article  ADS  CAS  Google Scholar 

  9. Kalogera, V. in Evolution of Binary and Multiple Star Systems (eds Podsiadlowski, P. et al.) (ASP Conf. Ser., Astronomical Society of the Pacific, San Francisco, in the press); also as preprint astro-ph/0012064 at 〈http://xxx.lanl.gov〉 (2001).

    Google Scholar 

  10. Mirabel, I. F. & Rodriguez, L. F. A superluminal source in the galaxy. Nature 371, 46–48 (1994).

    Article  ADS  Google Scholar 

  11. Fender, R. P. et al. MERLIN observations of relativistic ejections from GRS 1915+105. Mon. Not. R. Astron. Soc. 304, 865–876 (1999).

    Article  ADS  Google Scholar 

  12. Greiner, J., Cuby, J. G., McCaughrean, M. J., Castro-Tirado, A. J. & Mennickent, R. E. Identification of the donor in the X-ray binary GRS 1915+105. Astron. Astrophys. 373, L37–L40 (2001).

    Article  ADS  CAS  Google Scholar 

  13. Shahbaz, T., Bandyopadhyay, R., Charles, P. A. & Naylor, T. Infrared spectroscopy of V404 Cygni: limits on the accretion disc contamination. Mon. Not. R. Astron. Soc. 282, 977–981 (1996).

    Article  ADS  CAS  Google Scholar 

  14. McClintock, J. E. et al. A black hole of >6 M in the X-ray nova XTE J1118+480. Astrophys. J. 551, L147–L150 (2001).

    Article  ADS  CAS  Google Scholar 

  15. Kalogera, V. Donor stars in black hole X-ray binaries. Astrophys. J. 521, 723–734 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Eggleton, P. P. & Verbunt, F. Triple star evolution and the formation of short-period, low mass X-ray binaries. Mon. Not. R. Astron. Soc. 220, 13p–18p (1986).

    Article  ADS  Google Scholar 

  17. Greiner, J., Morgan, E. H. & Remillard, R. A. Rossi X-Ray Timing Explorer observations of GRS 1915+105. Astrophys. J. 473, L107–L110 (1996).

    Article  ADS  Google Scholar 

  18. Remillard, R. A., Morgan, E. H., McClintock, J. E., Bailyn, C. D. & Orosz, J. A. RXTE observations of 0.1–300 Hz quasi-periodic oscillations in the microquasar GRO J1655-40. Astrophys. J. 522, 397–412 (1999).

    Article  ADS  Google Scholar 

  19. Okazaki, A. T., Kato, S. & Fukue, J. Global trapped oscillations of relativistic accretion disks. Publ. Astron. Soc. Jpn 39, 457–473 (1987).

    ADS  Google Scholar 

  20. Nowak, M. A., Wagoner, R. V., Begelman, M. C. & Lehr, D. E. The 67 Hz feature in the black hole candidate GRS 1915+105 as a possible “diskoseismic” mode. Astrophys. J. 477, L91–L94 (1997).

    Article  ADS  Google Scholar 

  21. Cui, W., Zhang, S. N. & Chen, W. Evidence for frame-dragging around spinning black holes in X-ray binaries. Astrophys. J. 492, L53–L56 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Titarchuk, L., Lapidus, I. & Muslimov, A. Mechanisms for high-frequency quasi-periodic oscillations in neutron star and black hole binaries. Astrophys. J. 499, 315–328 (1998).

    Article  ADS  Google Scholar 

  23. Sobczak, G. J. McClintock, J. E., Remillard, R. E., Bailyn, C. D. & Orosz, J. A. RXTE spectral observations of the 1996–1997 outburst of the microquasar GRO J1655-40. Astrophys. J. 520, 776–787 (1999).

    Article  ADS  Google Scholar 

  24. Merloni, A., Fabian, A. C. & Ross, R. R. On the interpretation of the multicolour disc model for black hole candidates. Mon. Not. R. Astron. Soc. 313, 193–197 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Watarai, K., Fukue, J., Takeuchi, M. & Mineshige, S. Galactic black-hole candidates shining at the Eddington luminosity. Publ. Astron. Soc. Jpn 52, 133–141 (2000).

    Article  ADS  Google Scholar 

  26. Devillard, N. Eclipse users guide. 〈http://www.eso.org/projects/aot/eclipse/eug/index.html〉 (2000).

  27. Phillips, S. N., Shahbaz, T. & Podsiadlowski, Ph. The outburst radial velocity curve of X-ray Nova Scorpii 1994 ( = GRO J1655-40): a reduced mass for the black hole? Mon. Not. R. Astron. Soc. 304, 839–844 (1999).

    Article  ADS  Google Scholar 

  28. Fich, M., Blitz, L. & Stark, A. A. The rotation curve of the Milky Way to 2 R. Astrophys. J. 342, 272–284 (1989).

    Article  ADS  Google Scholar 

  29. Warmels, R. H. in Astronomical Data Analysis Software and Systems I 115–119 (PASP Conf. Ser. 25, Astronomical Society of the Pacific, San Francisco, 1991).

    Google Scholar 

Download references

Acknowledgements

This work is based on observations collected at the European Southern Observatory, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Greiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner, J., Cuby, J. & McCaughrean, M. An unusually massive stellar black hole in the Galaxy. Nature 414, 522–525 (2001). https://doi.org/10.1038/35107019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35107019

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing