Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-Tc superconducting materials for electric power applications

Abstract

Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductor forms of practical superconductors.
Figure 2: Magnetic field–temperature diagram for Nb47wt%Ti, Nb3Sn, MgB2, Bi-2223 and YBCO.
Figure 3: Crystal structures of Nb47wt%Ti, Nb3Sn, MgB2, Bi-2223 and YBCO.
Figure 4: Transport critical current density at 4.2 K measured in thin films of YBCO grown on [001] tilt bicrystal substrates of SrTiO3 (squares37 and filled diamonds44), Y2O3-stabilized ZrO2 (circles97), and bi-epitaxial junctions (open diamonds98) of varying misorientation angle θ.
Figure 5: Grain boundary structure and its effect on vortex properties.
Figure 6: Magneto-optical image of the flux penetrating into a typical deformation-textured YBCO coated conductor overlaid on a light-microscope image of the underlying Ni substrate.
Figure 7: Magneto-optical images of (left to right) a sintered MgB2 slab63, a YBCO IBAD-coated conductor, and a Bi-2223 monocore tape23.
Figure 8: Colour map of the spatial distribution of the local critical current density in the same monocore Bi-2223 tape imaged in Fig. 7.
Figure 9: Magneto-optical images at 77 K of the self-field produced by an applied transport current in a RABiTS coated conductor sample for which the full-width Jc(77K,0T) was 0.7 MA cm−2.
Figure 10: Spatial distribution of the electric field E(x,y) for the power-law EJ characteristic, E = Ec(J/Jc)n, near a planar defect of length a in a film of width d, n = 20 and a = 0.1d, as calculated in refs 76,77.

Similar content being viewed by others

References

  1. Berlincourt, T. G. Type-II superconductivity: quest for understanding. IEEE Trans. Magn. 23, 403–412 (1987).

    Article  ADS  Google Scholar 

  2. Kunzler, J. E., Buehler, E., Hsu, L. & Wernick, J. Superconductivity in Nb3Sn at high current density in a magnetic field of 88 kgauss. Phys. Rev. Lett. 6, 89–91 (1961).

    Article  ADS  CAS  Google Scholar 

  3. Gavaler, J. Superconductivity in Nb-Ge films above 22 K. Appl. Phys. Lett. 23, 480–482 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Bednorz, G. & Muller, K. A. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Wu, M. K. et al. Superconductivity at 93 K in an new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–912 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature 363, 56–58 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Larbalestier, D. C. et al. Power Applications of Superconductivity in Japan and Germany (World Technology and Engineering Center, Loyola College, MD, September 1997).

  8. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wilson, M. Superconducting Magnets (Clarendon, Oxford, 1983).

    Google Scholar 

  10. Dew-Hughes, D. Physics and Materials Science of Vortex States, Flux Pinning and Dynamics NATO Science Ser. E, Vol. 356 (eds Kossowsky, R., Bose, S., Pan, V. & Durosoy, Z.) 705–730 (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  11. Hassenzahl, W. V. Superconductivity, an enabling technology for 21st century power systems? IEEE Trans. Appl. Supercond. 11, 1447–1453 (2001).

    Article  ADS  Google Scholar 

  12. Radebaugh, R. in Advances in Cryogenic Engineering Vol. 44 (eds Haruyama, T., Mitsui, T. & Yamafuji, K.) 33–44 (Elsevier Science, 1997).

    Google Scholar 

  13. Grant, P. Rehearsals for prime time. Nature 411, 532–533 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Suenaga, M., Ghosh, A. K., Hu, Y. & Welch, D. O. Irreversibility temperatures of Nb3Sn and Nb-Ti. Phys. Rev. Lett. 66, 1777–1780 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Brandt, E. H. The flux line lattice in superconductors. Rep. Prog. Phys. 58, 1465–1594 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Xu, M. et al. Single crystal MgB2 with anisotropic superconducting properties. Preprint cond-mat/0105271 at 〈http://xxx.lanl.gov〉 (2001).

  17. Patnaik, S. et al. Electronic anisotropy, magnetic field-temperature phase diagram and their dependence on resistivity in c-axis oriented MgB2 thin films. Supercond. Sci. Technol. 14, 315–319 (2001).

    Article  ADS  CAS  Google Scholar 

  18. Blatter, G., Feigelman, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Schwartzkopf, L. A., Jiang, J., Cai, X. Y., Apodaca, D. & Larbalestier, D. C. The use of the in-field critical current density, Jc(0.1T), as a better descriptor of (Bi,Pb)2Sr2Ca2Cu3Ox/Ag tape performance. Appl. Phys. Lett. 75, 3168–3170 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Canfield, P. C. et al. Superconductivity in dense MgB2 wires. Phys. Rev. Lett. 86, 2423–2426 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Tinkham, M. Introduction to Superconductivity. (McGraw Hill, New York, 1975).

    Google Scholar 

  22. Campbell, A. M. & Evetts, J. E. Flux vortices and transport current in type-II superconductors. Adv. Phys. 21, 194–428 (1972).

    Article  ADS  Google Scholar 

  23. Polyanskii, A. A. et al. Examination of current limiting mechanisms in monocore Ag/BSCCO tape with high critical current density. IEEE Trans. Appl. Supercond. 11, 3269–3270 (2001).

    Article  ADS  Google Scholar 

  24. Meingast, C. & Larbalestier, D. C. Quantitative description of a very high critical current density Nb-Ti superconductor during its final optimization strain. II. Flux pinning mechanisms. J. Appl. Phys. 66, 5971–5983 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Kramer, E. J. Dynamics of dislocation dipole motion in the flux line lattice of type-II superconductors. J. Appl. Phys. 41, 621–629 (1970).

    Article  ADS  Google Scholar 

  26. Dew-Hughes, D. The role of grain boundaries in determining Jc in high-field, high current superconductors. Phil. Mag. 55, 459–449 (1987).

    Article  CAS  Google Scholar 

  27. Cooley, L. D., Lee, P. J. & Larbalestier, D. C. Changes in flux pinning curve shape for flux-line separations comparable to grain size in Nb3Sn wires. Adv. Cryo. Eng. (in the press).

  28. Eom, C. B. et al. High critical current density and enhanced irreversibility field in superconducting MgB2 thin films. Nature 411, 558–560 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Song, X. et al. Anisotropic grain morphology, crystallographic texture and their implications for the electromagnetic properties of polycrystalline MgB2 thin films, sintered pellets and filaments. Supercond. Sci. Technol. (in the press).

  30. Jin, S., Mavoori, H., Bower, C. & van Dover, R. B. High critical current in iron-clad superconducting MgB2 wires. Nature 411, 563–565 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Gurevich, A. & Pashitskii, E. A. Current transport through low-angle grain boundaries in high-temperature superconductors. Phys. Rev. B 57, 13878–13893 (1998).

    Article  ADS  CAS  Google Scholar 

  32. Pan, S. H. et al. Imaging the effect of individual zinc impurities on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Pan, S. H. et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 413, 282–285 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Kes, P. Flux pinning and creep in high-temperature superconductors. Physica C 185, 288–291 (1991).

    Article  ADS  Google Scholar 

  35. Diaz, A., Mechin, L., Berghuis, P. & Evetts, J. E. Evidence for vortex pinning by dislocations in YBa2Cu3O7 low angle grain boundaries. Phys. Rev. Lett. 80, 3855–3858 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Dam, B. et al. Origin of high critical currents in YBa2Cu3O7 superconducting thin films. Nature 399, 439–442 (1999).

    Article  ADS  CAS  Google Scholar 

  37. Hilgenkamp, H. & Mannhart, J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. (in the press).

  38. Miu, L. et al. Vortex unbinding and layer decoupling in epitaxial Bi2Sr2Ca2Cu3O8+δ films. Phys. Rev. B 52, 4553–4558 (1995).

    Article  ADS  CAS  Google Scholar 

  39. Vargas, J. L. & Larbalestier, D. C. Flux pinning by ordered oxygen deficient phases in nearly stoichiometric YBa2Cu3O7-δ single crystals. Appl. Phys. Lett. 60, 1741–1743 (1992).

    Article  ADS  CAS  Google Scholar 

  40. Yeshurun, Y., Malozemoff, A. P. & Shaulov, A. Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys. 68, 911–949 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Civale, L. Vortex pinning and creep in superconductors with columnar defects. Supercond. Sci. Technol. 10, A11–A28 (1997).

    Article  ADS  CAS  Google Scholar 

  42. Tonies, S. et al. On the current transport limitations in Bi-based high temperature superconducting tapes. Appl. Phys. Lett. 78, 3851–3853 (2001).

    Article  ADS  CAS  Google Scholar 

  43. Dimos, D., Chaudhari, P. & Mannhart, J. Superconducting transport properties in YBa2Cu3O7-δ bicrystals. Phys. Rev. B 41, 4038–4049 (1990).

    Article  ADS  CAS  Google Scholar 

  44. Heinig, N. F., Redwing, R. D., Nordman, J. E. & Larbalestier, D. C. Strong to weak coupling transition in low misorientation angle thin film YBa2Cu3O7-δ bicrystals. Phys. Rev. B 60, 1409–1417 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Verebelyi, D. et al. Low angle grain boundary transport in YBa2Cu3O7-δ coated conductors. Appl. Phys. Lett. 76, 1755–1757 (2000).

    Article  ADS  CAS  Google Scholar 

  46. Goyal, A. et al. Texture formation and grain boundary network in rolling assisted biaxially textured substrates and in epitaxial YBCO films. Micron 30, 463–478 (1999).

    Article  Google Scholar 

  47. Iijima, Y., Kakimoto, K., Kimura, M., Takeda, K. & Saitoh T. Reel to reel continuous formation of Y-123 coated conductors by IBAD and PLD method. IEEE Trans. Appl. Supercond. 11, 2816–2821 (2001).

    Article  ADS  Google Scholar 

  48. Larbalestier, D. C. & West, A. W. New perspective on flux pinning in niobium-titanium composite superconductors. Acta Metall. 32, 1871–1881 (1984).

    Article  CAS  Google Scholar 

  49. Cooley, L. D., Daeumling, M., Willis, T. W. & Larbalestier, D. C. Weak link behavior in polycrystalline BaPb0.75Bi0.25O3 . IEEE Trans. Magn. 25, 2314–2316 (1989).

    Article  ADS  CAS  Google Scholar 

  50. Takagi, T., Chiang, Y. M. & Roshko, A. Origin of grain-boundary weak links in BaPb1–xBixO3 superconductor. J. Appl. Phys. 68, 5750–5758 (1990).

    Article  ADS  CAS  Google Scholar 

  51. Babcock, S. E. & Vargas, J. L. The nature of grain boundaries in high-Tc superconductors. Annu. Rev. Mater. Sci. 25, 193–222 (1995).

    Article  ADS  CAS  Google Scholar 

  52. Browning, N. D. et al. The atomic origin of reduced critical currents at [001] tilt grain boundaries in YBa2Cu3O7 thin films. Physica C 294, 183–193 (1998).

    Article  ADS  CAS  Google Scholar 

  53. Schmehl, A. et al. Doping induced enhancement of the critical currents of grain boundaries in YBa2Cu3O7 . Europhys. Lett. 47, 110–115 (1999).

    Article  ADS  CAS  Google Scholar 

  54. Hammerl, G. et al. Enhanced supercurrent density in polycrystalline YBa2Cu3O7 at 77K from calcium doping of grain boundaries. Nature 407, 162–164 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Daniels, G. A., Gurevich, A. & Larbalestier, D. C. Improved strong magnetic field performance of low angle grain boundaries of calcium and oxygen overdoped YBa2Cu3O7 . Appl. Phys. Lett. 77, 3251–3253 (2000).

    Article  ADS  CAS  Google Scholar 

  56. Feldmann, D. M. et al. Influence of nickel substrate grain structure on YBa2Cu3O7 supercurrent connectivity in deformation-textured coated conductors. Appl. Phys. Lett. 77, 2906–2908 (2000).

    Article  ADS  CAS  Google Scholar 

  57. Feldmann, D. M. et al. Inter and intra-grain transport measurements in YBa2Cu3O7-x deformation textured coated conductors. Appl. Phys. Lett. (in the press).

  58. Gurevich, A. & Cooley, L. D. Anisotropic flux pinning in a network of planar defects. Phys. Rev. B 50, 13563–13576 (1994).

    Article  ADS  CAS  Google Scholar 

  59. Amrein, T., Schultz, L., Kabius, B. & Urban, K. Orientation dependence of grain boundary critical current in high-Tc bicrystals. Phys. Rev. B 51, 6792 (1995).

    Article  ADS  CAS  Google Scholar 

  60. Attenberger, A. Electrische transportmessungen uber definierte Korngrenzen-Strukturen in epitaktischen Bi-2223 Schichten. Thesis, Technische Universitat Dresden (2000).

    Google Scholar 

  61. Tsay, Y. N. et al. Transport properties of Bi2Sr2CaCu2O8+δ bicrystals with [001] tilt grain boundaries. IEEE Trans. Appl. Supercond. 9, 1622–1625 (1999).

    Article  ADS  Google Scholar 

  62. Polyanskii, A. A. et al. Magneto-optical study of flux penetration and critical current densities in [001] tilt YBa2Cu3O7 thin-film bicrystals. Phys. Rev. B 53, 8687–8697 (1996).

    Article  ADS  CAS  Google Scholar 

  63. Polyanskii, A. A. et al. Magneto-optical studies of the uniform critical state in bulk MgB2 . Supercond. Sci. Technol. 14, 811–815 (2001).

    Article  ADS  CAS  Google Scholar 

  64. Larbalestier, D. C. et al. Strongly linked current flow in polycrystalline forms of the superconducting MgB2 . Nature 410, 186–189 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Chu, S. Y. & McHenry, M. E. Growth and characterization of (Bi,Pb)2Sr2Ca2Cu3Ox single crystals. J. Mat. Res. 13, 589–595 (1998).

    Article  ADS  CAS  Google Scholar 

  66. Malozemoff, A. P. et al. HTS wires at commercial performance levels. IEEE Trans. Appl. Supercond. 9, 2469–2473 (1999).

    Article  ADS  Google Scholar 

  67. Huang, Y. B. et al. Progress in Bi-2223 tape performance. Adv. Cryo. Eng. (in the press).

  68. Pashitski, A. E., Polyanskii, A., Gurevich, A., Parrell, J. A. & Larbalestier, D. C. Magnetic granularity, percolation and preferential current flow in a silver-sheathed Bi1.8Pb0.4Sr2Ca2Cu3O8+x tape. Physica C 246, 133 (1995).

    Article  ADS  CAS  Google Scholar 

  69. Holzapfel, B. et al. Grain boundary networks in Y123 coated conductors. Formation, properties and simulation. IEEE Trans. Appl. Supercond. 11, 3872–3875 (2001).

    Article  ADS  Google Scholar 

  70. Rutter, N. & Glowacki, B. Modelling of orientation relations in 2-D percolative systems of buffered metallic substrates for coated conductors. IEEE Trans. Appl. Supercond. 11, 2730–2733 (2001).

    Article  ADS  Google Scholar 

  71. Rupich, M. W. et al. Low cost Y-Ba-Cu-O coated conductors. IEEE Trans. Appl. Supercond. 11, 2927–2930 (2001).

    Article  ADS  Google Scholar 

  72. Maeda, T. et al. YBa2Cu3Ox thick films grown on textured metal substrates by liquid-phase epitaxy process. IEEE Trans. Appl. Supercond. 11, 2931–2934 (2001).

    Article  ADS  Google Scholar 

  73. Solovyov, V. et al. Ex situ post-deposition processing for large area YBa2Cu3Ox films and coated tapes. IEEE Trans. Appl. Supercond. 11, 2939–2943 (2001).

    Article  ADS  Google Scholar 

  74. Holesinger, T. et al. A comparison of buffer layer architectures on continuously processed YBCO coated conductors based on the IBAD YSZ process. IEEE Trans. Appl. Supercond. 11, 3359–3364 (2001).

    Article  ADS  Google Scholar 

  75. Gurevich, A. Thermal instability near planar defects in superconductors. Appl. Phys. Lett. 78, 1891–1893 (2001).

    Article  ADS  CAS  Google Scholar 

  76. Gurevich, A. & Friesen, M. Nonlinear current flow in superconductors with planar obstacles. Phys. Rev. B 62, 4004–2025 (2000).

    Article  ADS  CAS  Google Scholar 

  77. Friesen, M. & Gurevich, A. Nonlinear current flow in superconductors with restricted geometries. Phys. Rev. B 63, 064521-1-26 (2001).

  78. Glowacki, B. A. et al. Superconductivity of powder-in-tube MgB2 wires. Supercond. Sci. Technol. 14, 193–199 (2001).

    Article  ADS  CAS  Google Scholar 

  79. Suo, H. L. et al. High transport and inductive critical currents in dense Fe- and Ni-clad MgB2 tapes using fine powder. Adv. Cryo. Eng. (in the press).

  80. Grasso, G. et al. Preperation and properties of unsintered MgB2 supercondcuting tapes. Adv. Cryo. Eng. (in the press).

  81. Kumakura, H., Matsumoto, A., Fujii, H., Takano, Y. & Togano, K. Fabrication and superconducting properties of powder-in-tube processed MgB2 tapes and wires. Adv. Cryo. Eng. (in the press).

  82. Grasso, G. et al. Large transport critical currents in unsintered MgB2 superconducting tapes. Appl. Phys. Lett. 79, 230–232 (2001).

    Article  ADS  CAS  Google Scholar 

  83. Malozemoff, A. P. D. F. et al. Low-cost YBCO coated conductor technology. Supercond. Sci. Technol. 13, 473–476 (2000).

    Article  ADS  CAS  Google Scholar 

  84. Pyon, T. & Gregory, E. Nb3Sn conductors for high energy physics and fusion applications. IEEE Trans. Appl. Supercond. 11, 3688–3691 (2001).

    Article  ADS  Google Scholar 

  85. Field, M., Hentges, R., Parrell, J., Zhang, Y. & Hong, S. Progress with Nb3Sn conductors at Oxford Instruments–Superconducting Technology. IEEE Trans. Appl. Supercond. 11, 3692–3695 (2001).

    Article  ADS  Google Scholar 

  86. Wang, W. G. et al. Engineering critical current density improvement in Ag-Bi-2223 tapes. IEEE Trans. Appl. Supercond. 11, 2983–2986 (2001).

    Article  ADS  Google Scholar 

  87. Masur, L. et al. Long length manufacturing of high performance BSCCO-2223 tape for the Detroit-Edison Power Cable Project. IEEE Trans. Appl. Supercond. 11, 3256–3260 (2001).

    Article  ADS  Google Scholar 

  88. Hayashi, K. et al. Development of Ag-sheathed Bi2223 superconducting wires and their applications. IEEE Trans. Appl. Supercond. 11, 3281–3284 (2001).

    Article  ADS  Google Scholar 

  89. Jiang, J. et al. Through-process study of factors controlling the critical current density of Ag-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox tapes. Supercond. Sci. Technol. 14, 548–556 (2001).

    Article  ADS  CAS  Google Scholar 

  90. Rikel, M. O. et al. Overpressure processing Bi2223/Ag tapes. IEEE Trans. Appl. Supercond. 11, 3026–3029 (2001).

    Article  ADS  Google Scholar 

  91. Flukiger, R. et al. Phase formation in Bi,Pb(2223) tapes. IEEE Trans. Appl. Supercond. 11, 3393–3398 (2001).

    Article  ADS  Google Scholar 

  92. Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H. & Hammond, R. H. Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparison with ion-beam-assisted deposition yttria-stabilized-zirconia. Appl. Phys. Lett. 71, 2955–2957 (1997).

    Article  ADS  CAS  Google Scholar 

  93. Groves, J. R. et al. High critical current density YBa2Cu3O7-δ thick films using ion beam assisted deposition MgO bi-axially oriented template layers on nickel-based superalloy substrates. J. Mater. Res. 16, 2175–2178 (2001).

    Article  ADS  CAS  Google Scholar 

  94. Hasegawa, K. et al. in Proc. 9th Int. Symp. Supercond. (IIS'96) Vol. 2, 745–748 (Springer, Tokyo 1997).

    CAS  Google Scholar 

  95. Metzger, R. Superconducting tapes using ISD buffer layers produced by evaporation of MgO or reactive evaporation of magnesium. IEEE Trans. Appl. Supercond. 11, 2826–2829 (2001).

    Article  ADS  Google Scholar 

  96. Reade, R. P., Berdhal, P., Russo, R. E. & Garrison, S. M. Laser deposition of biaxially textured yttria-stabilized zirconia buffer layers on polycrystalline metallic alloys for high critical current Y-Ba-Cu-O thin films. Appl. Phys. Lett. 61, 2231–2233 (1992).

    Article  ADS  CAS  Google Scholar 

  97. Ivanov, Z. G. et al. Weak links and dc SQUIDS on artificial nonsymmetric grain boundaries in YBa2Cu3O7–x . Appl. Phys. Lett. 59, 3030 (1991).

    Article  ADS  CAS  Google Scholar 

  98. Char, K. et al. Bi-epitaxial grain-boundary junctions in YBa2Cu3O7 . Appl. Phys. Lett. 59, 733–735 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to many colleagues for discussions and collaborations. In particular, we thank our present and former Madison colleagues S. Babcock, X. Cai, L. Cooley, G. Daniels, C.-B. Eom, E. Hellstrom, J. Jiang, P. Lee, J. Reeves, M. Rikel and X. Song, and colleagues within the Wire Development Group, especially B. Riley (AMSC), V. Maroni (ANL) and T. Holesinger (LANL). Recent collaborations on coated conductors with T. Peterson and P. Barnes (AFRL), R. Feenstra (ORNL) and D. Verebelyi (AMSC) have been particularly helpful.. R. Blaugher (NREL), G. Grasso (Genoa) and J. Mannhart (Augsburg) supplied material for the tables and figures. Finally we thank the Air Force Office of Scientific Research, the Department of Energy and the National Science Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Larbalestier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larbalestier, D., Gurevich, A., Feldmann, D. et al. High-Tc superconducting materials for electric power applications. Nature 414, 368–377 (2001). https://doi.org/10.1038/35104654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35104654

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing