Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ETS-domain transcription factor family

Key Points

  • ETS-domain transcription factors are found in all metazoan organisms and are characterised by the presence of a conserved DNA-binding domain (the ETS-domain). Other domains provide additional functions to each protein, and contribute to their specificity of action at the molecular and biological levels.

  • We now know the structures of several family members that conform to the winged-helix-turn-helix motif. The ETS-domain is also involved in multiple protein-protein interactions in addition to its well defined role in mediating DNA binding.

  • DNA binding is a dynamic process that is tightly regulated. Several ETS-domain proteins are autoinhibited in the absence of inappropriate stimuli or partner proteins. Conversely, such inhibition is lost in the presence of appropriate triggers.

  • ETS-domain proteins bind to a variety of protein partners that inhibit or enhance DNA binding. In addition, they bind to coactivators and corepressors that modulate their transcriptional regulatory properties.

  • Many ETS-domain proteins have been shown to be targeted by MAP-kinase pathways. Phosphorylation by MAP kinases affects DNA binding, transcriptional activation/repression, protein stability and subcellular localisation of different ETS-domain proteins.

  • A major mode of action of ETS-domain transcription factors is to recruit histone acetyl transferases or deacetylases to activate or repress transcription.

  • ETS-domain proteins contribute to a variety of different biological processes. Major themes include roles in haematopoiesis, vasculogenesis and neuronal development. Disruption of these proteins often leads to cancer.

  • It is becoming apparent that many ETS-domain proteins have unique molecular and biological functions. By embracing new technologies, future work is likely to further emphasize this concept and provide us with a unique picture of how individual proteins function.

Abstract

ETS-domain transcription-factor networks represent a model for how combinatorial gene expression is achieved. These transcription factors interact with a multitude of co-regulatory partners to elicit gene-specific responses and drive distinct biological processes. These proteins are controlled by a complex series of inter and intramolecular interactions, and signalling pathways impinge on these proteins to further regulate their action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the ETS domain and pointed domain of Ets-1.
Figure 2: Protein–protein interactions involving the ETS domain.
Figure 3: Regulation of DNA binding by ETS-domain transcription factors.
Figure 4: Structure of the SAP-1–SRF–DNA complex.
Figure 5: Regulation of ETS-domain transcription factors by phosphorylation.
Figure 6: Targeting of the ERK MAPK to Elk-1.

Similar content being viewed by others

References

  1. Nunn, M. F., Seeburg, P. H., Moscovici, C. & Duesberg, P. H. Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 306, 391–395 (1983).

    CAS  PubMed  Google Scholar 

  2. Leprince, D. et al. Putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 306, 395–397 (1983).

    CAS  PubMed  Google Scholar 

  3. Karim, F. D. et al. The ETS-domain: a new DNA-binding motif that recognises a purine-rich core DNA sequence. Genes Dev. 4, 1451–1453 (1990).

    CAS  PubMed  Google Scholar 

  4. Degnan, B. M., Degnan, S. M., Naganuma, T. & Morese, D. E. The ets multigene family is conserved throughout the Metazoa. Nucleic Acids Res. 21, 3479–3484 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Laudet, V., Niel, C., Duterque-Coquillaud, M., Leprince, D. & Stehelin, D. Evolution of the ets gene family. Biochem. Biophys. Res. Commun. 190, 8–14 (1993).

    CAS  PubMed  Google Scholar 

  6. Sharrocks, A. D., Brown, A. L., Ling, Y. & Yates, P. R. The ETS-domain transcription factor family. Int. J. Biochem. Cell Bio. 29, 1371–1387 (1997).

    CAS  Google Scholar 

  7. Graves, B. J. & Petersen, J. M. in Adv. Cancer Res. Specificity within the ets family of transcription factors (eds van de Woude, G. and Klein, G.) 1–55 (Academic, 1998).

  8. Klambt C. The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells. Development 117, 163–176 (1993).

    CAS  PubMed  Google Scholar 

  9. Lacronique, V. et al. A TEL–JAK2 fusion protein with constitutive kinase activity in human leukaemia. Science 278, 1309–1312 (1997).

    CAS  PubMed  Google Scholar 

  10. Kim, C. A. et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J. 20, 4173–4182 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baker, D. A., Mille-Baker, B., Wainwright, S. M., Ish-Horowicz, D. & Dibb, N. J. Mae mediates MAP kinase phosphorylation of Ets transcription factors in Drosophila. Nature 411, 330–334 (2001).This describes the identification of Mae, which binds to Yan and potentiates its phosphorylation by MAPKs.

    CAS  PubMed  Google Scholar 

  12. Fenrick, R. et al. Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol. Cell. Biol. 19, 6566–6574 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dittmer, J. & Nordheim, A. Ets transcription factors and human disease. Biochim. Biophys. Acta 1377, F1–F11 (1998).

    CAS  PubMed  Google Scholar 

  14. Wasylyk. B., Hagman, J. & Gutierrez-Hartmann, A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signalling pathway. Trends Biochem. Sci. 23, 213–216 (1998).

    CAS  PubMed  Google Scholar 

  15. Li, R., Pei, H. & Watson, D. K. Regulation of Ets function by protein–protein interactions. Oncogene 19, 514–523 (2000).

    Google Scholar 

  16. Liang, H. et al. Solution structure of Fli-1 when bound to DNA. Nature Struct. Biol. 1, 871–876 (1994).The first solution structure of an ETS DNA-binding domain.

    CAS  PubMed  Google Scholar 

  17. Donaldson, L. W., Petersen, J. M., Graves, B. J. & McIntosh, L. P. Solution structure of the ETS-domain from murine Ets-1: a winged helix–turn–helix motif. EMBO J. 15, 125–134 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Werner, M. H. et al. Correction of the NMR structure of the ETS1/DNA complex. J. Biomol. NMR 10, 317–328 (1997).

    CAS  PubMed  Google Scholar 

  19. Kodandapani, R. A new pattern for helix–turn–helix recognition revealed by the PU.1 ETS-domain DNA complex. Nature 380, 456–460 (1996).The first structure of an ETS DNA-binding domain–DNA complex.

    CAS  PubMed  Google Scholar 

  20. Batchelor, A. H., Piper, D. E., de la Brousse, F. C., McKnight, S. L. & Wolberger, C. The structure of GABPα/β: an ETS-domain-ankyrin repeat heterodimer bound to DNA. Science 279, 1037–1041 (1998).

    CAS  PubMed  Google Scholar 

  21. Mo, Y., Vaessen, B., Johnston, K. & Marmorstein, R. Structures of SAP-1 bound to DNA sequences from the E74 and c-fos promoters provide insights into how ETS proteins discriminate between related DNA targets. Mol. Cell 8, 210–212 (1998).

    Google Scholar 

  22. Mo, Y., Vaessen, B., Johnston, K. & Marmorstein, R. Structure of the elk-1-DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA. Nature Struct. Biol. 7, 292–297 (2000).This study provided structural insights into the determination of DNA-binding specificity by the ETS domain.

    CAS  PubMed  Google Scholar 

  23. Shore, P. et al. Determinants of DNA-binding specificity of ETS-domain transcription factors. Mol. Cell. Biol. 16, 3338–3349 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fitzsimmons, D. et al. Pax-5 (BSAP) recruites Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev. 10, 2198–2211 (1996).

    CAS  PubMed  Google Scholar 

  25. Jonsen, M. D., Petersen, J. M., Xu, Q.-P. & Graves, B. J. Characterisation of the co-operative function of inhibitory sequences in Ets-1. Mol. Cell. Biol. 16, 2065–2073 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Skalicky, J. J., Donaldson, L. W., Petersen, J. M., Graves, B. J. & McIntosh, L. P. Structural coupling of the inhibitory regions flanking the ETS-domain of murine Ets-1. Protein Sci. 5, 296–309 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Petersen, J. M. et al. Modulation of transcription factor Ets-1 DNA binding: DNA-induced unfolding of an α-helix. Science 269, 1866–1869 (1995).This shows that conformational changes in an inhibitory module of Ets-1 result in loss of DNA-binding autoinhibition.

    CAS  PubMed  Google Scholar 

  28. Kim, W. Y. Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO J. 18, 1609–1620 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Goetz, T. L., Gu, T. L., Speck, N. A. & Graves, B. J. Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor α2. Mol. Cell. Biol. 20, 81–90 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cowley, D. O. & Graves, B. J. Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev. 14, 366–376 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, S. H., Shore, P., Willingham, N., Lakey, J. H. & Sharrocks, A. D. The mechanism of phosphorylation-inducible activation of the ETS-domain transcription factor Elk-1. EMBO J. 18, 5666–5674 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hipskind, R. A., Rao, V. N., Mueller, C. G., Reddy, E. S. & Nordheim, A. Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature 354, 531–534 (1991).

    CAS  PubMed  Google Scholar 

  33. Dalton, S. & Treisman, R. Characterisation of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68, 597–612 (1992).

    CAS  PubMed  Google Scholar 

  34. Yates, P. R., Atherton, G. T., Deed, R. W., Norton, J. D. & Sharrocks, A. D. Id helix–loop–helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J. 18, 968–976 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brass, A. L., Kehrli, E., Eisenbeis, C. F., Storb, U. & Singh, H. Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. Genes Dev. 10, 2335–2347 (1996).

    CAS  PubMed  Google Scholar 

  36. Greenall, A., Willingham, N., Cheung, E., Boam, D. S. & Sharrocks, A. D. DNA binding by the ETS-domain transcription factor PEA3 is regulated by intramolecular and intermolecular protein–protein interactions. J. Biol. Chem. 276, 16207–16215 (2001).

    CAS  PubMed  Google Scholar 

  37. Brass, A. L., Zhu, A. Q. & Singh, H. Assembly requirements of PU.1–Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. EMBO J. 18, 977–991 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shore, P. & Sharrocks, A. D. The transcription factors Elk-1 and serum response factor interact by direct protein–protein contacts mediated by a short region of Elk-1. Mol. Cell. Biol. 14, 283–291 (1994).

    Google Scholar 

  39. Hassler, M. & Richmond, T. J. The B-box dominates SAP-1–SRF interactions in the structure of the ternary complex. EMBO J. 20, 3018–3028 (2001).The structure of the SRF–SAP-1 complex, illustrating how recruitment of the ETS-domain protein SAP-1 is enhanced by protein–protein interactions with SRF.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Criqui-Filipe, P., Ducret, C., Maira, S. M. & Wasylyk, B. Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J. 18, 3392–3403 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, S. H., Vickers, E., Brehm, A., Kouzarides, T. & Sharrocks, A. D. Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol. Cell. Biol. 21, 2802–2814 (2001).This shows that Elk-1 can act as both an activator and repressor protein, with the ETS-domain showing repressive activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, C., Shapiro, L. H., Rivera, M., Kumar, A. & Brindle, P. K. A role for CREB binding protein and p300 transcriptional coactivators in Ets-1 transactivation functions. Mol. Cell. Biol. 18, 2218–2229 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Papoutsopoulou, S. & Janknecht, R. Phosphorylation of ETS transcription factor ER81 in a complex with its coactivators CREB-binding protein and p300. Mol. Cell. Biol. 20, 7300–7310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Janknecht, R. & Nordheim, A. Regulation of the c-fos promoter by the ternary complex factor Sap-1a and its coactivator CBP. Oncogene 12, 1961–1969 (1996).

    CAS  PubMed  Google Scholar 

  45. Gille, H., Sharrocks, A. D. & Shaw, P. E. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358, 414–417 (1992).The first demonstration that an ETS-domain protein, Elk-1/p62TCF, is a target of the MAPK pathways.

    CAS  PubMed  Google Scholar 

  46. Gille, H. et al. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951–962 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marais, R., Wynne, J. & Treisman, R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393 (1993).

    CAS  PubMed  Google Scholar 

  48. Whitmarsh, A. J., Shore, P., Sharrocks, A. D. & Davis, R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269, 403–407 (1995).

    CAS  PubMed  Google Scholar 

  49. Price, M. A., Cruzalegui, F. H. & Treisman, R. The p38 and ERK MAP kinase pathways co-operate to activate ternay complex factors and c-fos transcription in response to UV light. EMBO J. 15, 6552–6563 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ducret, C., Maira, S. M., Dierich, A. & Wasylyk, B. The net repressor is regulated by nuclear export in response to anisomycin, UV, and heat shock. Mol. Cell. Biol. 19, 7076–7087 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, B. S. et al. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol. Cell. Biol. 16, 538–547 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. McCarthy, S. A. et al. Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and the induction of heparin-binding epidermal growth factor gene expression by oncogenic Raf-1. Mol. Cell. Biol. 17, 2401–2412 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Le Gallic, L., Sgouras, D., Beal, G. Jr & Mavrothalassitis, G. Transcriptional repressor ERF is a Ras/mitogen-activated protein kinase target that regulates cellular proliferation. Mol. Cell. Biol. 19, 4121–4133 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rebay, I. & Rubin, G. M. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell 81, 857–866 (1995).

    CAS  PubMed  Google Scholar 

  55. Tan, P. B., Lackner, M. R. & Kim, S. K. MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell 93, 569–580 (1998).This shows that the ETS-domain transcription factor LIN-1 is a target of the MAPK signalling pathway in C. elegans.

    CAS  PubMed  Google Scholar 

  56. Yang, S.-H., Whitmarsh, A. J., Davis, R. J. & Sharrocks, A. D. The Elk-1 ETS-domain transcription factor contains a MAP kinase-targeting motif. Mol. Cell. Biol. 18, 710–720 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, S. -H., Whitmarsh, A. J., Davis, R. J. & Sharrocks, A. D. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J. 17, 1740–1749 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jacobs, D. et al. Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics 149, 1809–1822 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jacobs, D., Glossip, D., Xing, H., Muslin, A. J. & Kornfeld, K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 13, 163–175 (1999).The identification of a complex MAPK docking module in a subset of ETS-domain proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ducret, C., Maira, S. M., Lutz, Y. & Wasylyk, B. The ternary complex factor Net contains two distinct elements that mediate different responses to MAP kinase signalling cascades. Oncogene 19, 5063–5072 (2000).

    CAS  PubMed  Google Scholar 

  61. Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev. 9, 1377–1387 (1995).

    CAS  PubMed  Google Scholar 

  62. Pongubala, J. M. R. et al. Effect of PU.1 phosphorylation on interaction with N5-EMS and transcriptional activation. Science 259, 1622–1625 (1993).

    CAS  PubMed  Google Scholar 

  63. Chung, K. C., Gomes, I., Wang, D., Lau, L. F. & Rosner, M. R. Raf and fibroblast growth factor phosphorylate Elk1 and activate the serum response element of the immediate early gene pip92 by mitogen-activated protein kinase-independent as well as -dependent signaling pathways. Mol. Cell. Biol. 18, 2272–2281 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sugimoto, T., Stewart, S. & Guan, K. L. The calcium/calmodulin-dependent protein phosphatase calcineurin is the major Elk-1 phosphatase. J. Biol. Chem. 272, 29415–29418 (1997).

    CAS  PubMed  Google Scholar 

  65. Tian, J. & Karin, M. Stimulation of Elk1 transcriptional activity by mitogen-activated protein kinases is negatively regulated by protein phosphatase 2B (calcineurin). J. Biol. Chem. 274, 15173–15180 (1999).

    CAS  PubMed  Google Scholar 

  66. Mavrothalassitis, G. & Ghysdael, J. Proteins of the ETS family with transcriptional repressor activity. Oncogene 19, 6524–6532 (2000).

    CAS  PubMed  Google Scholar 

  67. Maira, S. M., Wurtz, J. M. & Wasylyk, B. Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix–loop–helix motif. EMBO J. 15, 5849–5865 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Guidez, F. et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL–AML1 oncoprotein. Blood 96, 2557–2561 (2000).

    CAS  PubMed  Google Scholar 

  69. Treisman, R. Ternary complex factors: growth regulated transcriptional activators. Curr. Opin. Genet. Dev. 4, 96–101 (1994).

    CAS  PubMed  Google Scholar 

  70. Sevilla, L. et al. The Ets2 transcription factor inhibits apoptosis induced by colony-stimulating factor 1 deprivation of macrophages through a Bcl-xL-dependent mechanism. Mol. Cell. Biol. 19, 2624–2634 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Taylor, J. M. et al. A role for the ETS domain transcription factor PEA3 in myogenic differentiation. Mol. Cell. Biol. 17, 5550–5558 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ohtani, N. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409, 1067–1070 (2001).

    CAS  PubMed  Google Scholar 

  73. Bories, J. C. et al. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature 377, 635–638 (1995).

    CAS  PubMed  Google Scholar 

  74. Muthusamy, N., Barton, K. & Leiden, J. M. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 377, 639–642 (1995).References 73 and 74 use 'tissue-specific' mouse knockouts to show a role for Ets-1 in T- and B-cell differentiation/survival.

    CAS  PubMed  Google Scholar 

  75. Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    CAS  PubMed  Google Scholar 

  76. McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).References 75 and 76 use mouse knockouts to show the importance of PU.1 in the development of several haematopoietic lineages.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Scott, E. W. et al. PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid–myeloid progenitors. Immunity 6, 437–447 (1997).

    CAS  PubMed  Google Scholar 

  78. Tondravi, M. M. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81–84 (1997).

    CAS  PubMed  Google Scholar 

  79. DeKoter, R. P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288, 1439–1441 (2000).This shows how different concentrations of an ETS-domain protein (PU.1) result in the differentiation of two haematopoietic lineages.

    CAS  PubMed  Google Scholar 

  80. Spyropoulos, D. D. et al. Haemorrhage, impaired haematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol. Cell. Biol. 20, 5643–5652 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lelievre, E., Lionneton, F., Soncin, F. & Vandenbunder, B. The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int. J. Biochem. Cell Biol. 33, 391–407 (2001).

    CAS  PubMed  Google Scholar 

  82. Wang, L. C. et al. Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J. 16, 4374–4383 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, L. C. et al. The TEL/ETV6 gene is required specifically for haematopoiesis in the bone marrow. Genes Dev. 12, 2392–2402 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ayadi, A. et al. Net-targeted mutant mice develop a vascular phenotype and up-regulate egr-1. EMBO J. 20, 5139–5152 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Roehl, H. & Nusslein-Volhard, C. Zebrafish pea3 and erm are general targets of FGF8 signaling. Curr. Biol. 11, 503–507 (2001).

    CAS  PubMed  Google Scholar 

  86. Lin, J. H. et al. Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell 95, 393–407 (1998).

    CAS  PubMed  Google Scholar 

  87. Arber, S., Ladle, D., Lin, J. H., Frank, E. & Jessell, T. M. ETS gene Er81 controls the formation of functional connections between group 1a sensory afferents and motor neurons. Cell 101, 485–498 (2000).This shows that ER81 knockout mice have defects in neuronal connectivities between subsets of neurons.

    CAS  PubMed  Google Scholar 

  88. Laing, M. A. et al. Male sexual dysfunction in mice bearing targeted mutant alleles of the PEA3 ets gene. Mol. Cell. Biol. 20, 9337–9345 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Brunner, D. et al. The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370, 386–389 (1994).The identification of pointed-P2 as a target of MAPK in the sevenless pathway during Drosophila eye development.

    CAS  PubMed  Google Scholar 

  90. O'Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147 (1994).

    CAS  PubMed  Google Scholar 

  91. Samakovlis, C. et al. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122, 1395–1407 (1996).

    CAS  PubMed  Google Scholar 

  92. Sementchenko, V. I. & Watson, D. K. Ets target genes: past, present and future. Oncogene 19, 6533–6548 (2000).

    CAS  PubMed  Google Scholar 

  93. Tamir, A. et al. Fli-1, an Ets-related transcription factor, regulates erythropoietin-induced erythroid proliferation and differentiation: evidence for direct transcriptional repression of the Rb gene during differentiation. Mol. Cell. Biol. 19, 4452–4464 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tsai, E. Y. et al. A lipopolysaccharide-specific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor α promoter in vivo. Mol. Cell. Biol. 20, 6084–6094 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Slupsky, T. M. et al. Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc. Natl Acad. Sci. USA 95, 12129–12134 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chakrabarti, S. R., Sood, R., Nandi, S. & Nucifora, G. Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies. Proc. Natl Acad. Sci. USA 97, 13281–13285 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fromm, L. & Burden, S. J. Synapse-specific and neuregulin-induced transcription require an ets site that binds GABPα/GABPβ. Genes Dev. 12, 3074–3083 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schaeffer, L., Duclert, N., Huchet-Dymanus, M. & Changeux, J. P. Implication of a multisubunit Ets-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor. EMBO J. 17, 3078–3090 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yamamoto, H. et al. Defective trophoblast function in mice with a targeted mutation of Ets2. Genes Dev. 12, 1315–1326 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Xing, X. et al. The ets protein PEA3 suppresses HER-2/neu over expression and inhibits tumorigenesis. Nature Med. 6, 189–195 (2000).

    CAS  PubMed  Google Scholar 

  101. Lim, F., Kraut, N., Frampton, J. & Graf, T. DNA binding by c-Ets-1, but not v-Ets, is repressed by an intramolecular mechanism. EMBO J. 2, 643–652 (1992).

    Google Scholar 

  102. Golub, T. R. et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol. Cell. Biol. 8, 4107–4116 (1996).

    Google Scholar 

  103. Hahm, K. B. et al. Repression of the gene encoding the TGF-β type II receptor is a major target of the EWS–FLI1 oncoprotein. Nature Genet. 23, 222–227 (1999).

    CAS  PubMed  Google Scholar 

  104. Kouzarides, T. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9, 40–48 (1999).

    CAS  PubMed  Google Scholar 

  105. Kuo, M. H. & Allis, C. D. In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–433 (1999).

    CAS  PubMed  Google Scholar 

  106. Schulze, A. & Downward, J. Navigating gene expression using microarrays–a technology review. Nature Cell Biol. 3, E190–E195 (2001).

    CAS  PubMed  Google Scholar 

  107. Sieweke, M. H., Tekotte, H., Jarosch, U. & Graf, T. Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T cells. EMBO J. 17, 1728–1739 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sieweke, M. H., Tekotte, H., Frampton, J. & Graf, T. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85, 49–60 (1996).

    CAS  PubMed  Google Scholar 

  109. Nerlov, C., Querfurth, E., Kulessa, H. & Graf, T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 95, 2543–2551 (2000).

    CAS  PubMed  Google Scholar 

  110. Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl Acad. Sci. USA 96, 8705–8710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Rekhtman, N., Radparvar, F., Evans, T. & Skoultchi, A. I. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev. 13, 1398–1411 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tolon, R. M., Castillo, A. I., Jimenez–Lara, A. M. & Aranda, A. Association with Ets-1 causes ligand- and AF2-independent activation of nuclear receptors. Mol. Cell. Biol. 20, 8793–8802 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I apologize to colleagues in the field for not referencing all relevant papers owing to space constraints. Where possible, I have indicated the first or most significant papers that illustrate a particular point rather than providing a comprehensive listing. I thank M. Hassler and T. Richmond for help in drawing Fig. 4, and I. Hagan and S.-H. Yang for comments on the manuscript. The author is a research fellow of the Lister Institute of preventive medicine, and research in his lab is funded by the Wellcome Trust, Medical Research Council and Cancer Research Campaign (CRC).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Interpro:

ETS-domain

 Locuslink:

CaMKII

CBP

E74

ERF

Erg

mSin3A

p16

SUMO

TEL

TGF-β type II receptor

Yan

 OMIM:

Ewing sarcoma

 Swiss-Prot:

AML-1

c-myb

ELF1

Elk-1

ER81

EWS

Fli-1

GABPα

Pax-5

PEA3

Pnt

PU.1

SAP-1

SRF

USF-1

v-ets

Glossary

METAZOAN LINEAGE

The eukaryotic phylogenetic lineage that excludes yeasts, fungi and plants.

POINTED DOMAIN

A domain that is conserved in a subset of ETS-domain proteins with homology to the SAM domain and is found in various proteins, such as receptors, protein kinases and adaptor proteins.

WINGED HELIX–TURN–HELIX MOTIF

A subtype of a DNA-binding motif that consists of two α-helices separated by a tight turn. Contains an extended loop between two β-strands (wing) that also contacts DNA.

CAMKII

A protein kinase that is activated in the presence of calcium and the co-regulatory subunit, calmodulin.

ID HELIX–LOOP–HELIX (HLH) PROTEINS

These proteins contain a helix–loop–helix dimerization motif and act as inhibitors of DNA binding by basic HLH transcription factors.

B-BOX

A conserved protein–protein interaction motif that is found in the ternary complex factors that interact with serum response factor.

ANKYRIN REPEATS

These are structural repeat units that consist of two α-helices that form an antiparallel coiled-coil, followed by an extended loop. This was originally identified in ankyrin.

PHOSPHO-ACCEPTOR

An amino acid (typically serine, threonine or tyrosine) that can accept phosphate groups from ATP, which has been catalysed by protein kinases.

HDAC

(histone deacetylase). This catalyses the removal of acetyl groups from proteins.

HAT

(histone acetyltransferase). This catalyses the addition of acetyl groups to proteins.

LYMPHOID AND MYELOID LINEAGES

These are haematopoietic cell lineages that arise from two different progenitor populations.

OSTEOPETROSIS

A weakening of the bones due to the lack of bone matrix.

OSTEOCLASTS

These are cells that are derived from monocyte progenitors on the myeloid lineage that synthesize the bone matrix.

MEGAKARYOCYTIC LINEAGE

This is a haematopoietic cell lineage that arises from the myeloid progenitors that give rise to megakaryocytes and platelets.

SMALL UBIQUITIN-RELATED MODIFIER

(SUMO). A small protein, which is related to ubiquitin, that is conjugated to specific lysine groups in proteins by a complex of proteins.

NEUREGULIN

A growth factor found in neuromuscular synapses that activates members of the epidermal growth factor receptor family.

EXTRACELLULAR MATRIX REMODELLING

The degradation and redeposition of extracellular matrix that allows cell movement and organ growth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharrocks, A. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2, 827–837 (2001). https://doi.org/10.1038/35099076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35099076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing