Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photochemical cycling of iron in the surface ocean mediated by microbial iron(iii)-binding ligands

Abstract

Iron is a limiting nutrient for primary production in large areas of the oceans1,2,3,4. Dissolved iron(iii) in the upper oceans occurs almost entirely in the form of complexes with strong organic ligands5,6,7 presumed to be of biological origin8,9. Although the importance of organic ligands to aquatic iron cycling is becoming clear, the mechanism by which they are involved in this process remains uncertain. Here we report observations of photochemical reactions involving Fe(iii) bound to siderophores—high-affinity iron(iii) ligands produced by bacteria to facilitate iron acquisition10,11,12. We show that photolysis of Fe(iii)–siderophore complexes leads to the formation of lower-affinity Fe(iii) ligands and the reduction of Fe(iii), increasing the availability of siderophore-bound iron for uptake by planktonic assemblages. These photochemical reactions are mediated by the α-hydroxy acid moiety, a group which has generally been found to be present in the marine siderophores that have been characterized13,14,15. We suggest that Fe(iii)-binding ligands can enhance the photolytic production of reactive iron species in the euphotic zone and so influence iron availability in aquatic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the photochemical reaction of Fe(iii)–aquachelin complexes.
Figure 2: Tandem mass spectrometry and UV–visible spectrophotometry of the Fe(iii)–aquachelin peptide photoproduct.
Figure 3: Rate of iron(ii) production during photolysis of Fe(iii)–aquachelin C in natural sunlight, as determined via absorption of the ferrous tris(BPDS) complex at 536 nm.
Figure 4: Biological uptake of iron from photolysed Fe(iii)–aquachelin complexes, and diagram of siderophore-mediated photochemical iron cycling.

Similar content being viewed by others

References

  1. Martin, J. H. et. al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Coale, K. H. et. al. A massive phytoplankton bloom induced by an ecosystem-scale fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Boyd, P. W. et. al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Gledhill, M. & Van den Berg, C. M. G. Determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar. Chem. 47, 41–54 (1994).

    Article  CAS  Google Scholar 

  6. Rue, E. L. & Bruland, K. W. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50, 117–138 (1995).

    Article  CAS  Google Scholar 

  7. Wu, J. & Luther, G. W. Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand method and a kinetic approach. Mar. Chem. 50, 159–177 (1995).

    Article  CAS  Google Scholar 

  8. Hutchins, D. A., Witter, A. E., Butler, A. & Luther, G. W. Competition among marine phytoplankton for different chelated iron species. Nature 400, 858–861 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron concentrations in the world ocean? Mar. Chem. 57, 137–161 (1997).

    Article  CAS  Google Scholar 

  10. Trick, C. G. Hydroxamate-siderophore production and utilization by marine eubacteria. Curr. Microbiol. 18, 375–378 (1989).

    Article  CAS  Google Scholar 

  11. Wilhelm, S. & Trick, C. G. Iron-limited growth of cyanobacteria: Multiple siderophore production is a common response. Limnol. Oceanogr. 39, 1979–1984 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Granger, J. & Price, N. M. The importance of siderophores in the iron nutrition of heterotrophic marine bacteria. Limnol. Oceanogr. 44, 541–555 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Reid, R. T., Live, D. H., Faulkner, D. J. & Butler, A. A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366, 455–458 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Haygood, M. G., Holt, P. D. & Butler, A. Aerobactin production by a planktonic marine Vibrio sp. Limnol. Oceanogr. 38, 1091–1097 (1993).

    Article  ADS  Google Scholar 

  15. Martinez, J. S. et al. Self-assembling amphiphilic siderophores from marine bacteria. Science 287, 1245–1247 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Lewis, B. L. et al. Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Mar. Chem. 50, 179–188 (1995).

    Article  CAS  Google Scholar 

  17. Macrellis, H. M., Trick, C. G., Rue, E. L. & Bruland, K. W. Collection and detection of natural iron-binding ligands from seawater. Mar. Chem. (in the press).

  18. Rue, E. L. & Bruland, K. W. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol. Oceanogr. 42, 901–910 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Zuo, Y. & Hoigne, J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ. Sci. Technol. 26, 1014–1022 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Faust, B. C. & Zepp, R. G. Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 27, 2517–2522 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Albrecht-Gary, A.-M. & Crumbliss, A. L. in Metal Ions in Biological Systems Vol. 35, Iron Transport and Storage in Microorganisms, Plants, and Animals (eds Sigel, A. & Sigel, H.) 239–327 (Marcel Dekker, New York, 1998).

    Google Scholar 

  22. Wells, M. L., Mayer, L. M., Donard, O. F. X., de Souza Sierra, M. M. & Ackelson, S. G. The photolysis of colloidal iron in the oceans. Nature 353, 248–250 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Johnson, K. S., Coale, K. H., Elrod, V. A. & Tindale, N. W. Iron photochemistry in seawater from the equatorial Pacific. Mar. Chem. 46, 319–334 (1994).

    Article  CAS  Google Scholar 

  24. O'Sullivan, D. W., Hanson, A. K., Miller, W. L. & Kester, D. R. Measurement of Fe(II) in surface water of the equatorial Pacific. Limnol. Oceanogr. 36, 1727–1741 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Waite, T. D., Szymczak, R., Espey, Q. I. & Furnas, M. J. Diel variations in iron speciation in northern Australian shelf waters. Mar. Chem. 50, 79–91 (1995).

    Article  CAS  Google Scholar 

  26. Emmenegger, L., King, D. W., Sigg, L. & Sulzberger, B. Oxidation kinetics of Fe(II) in a eutrophic Swiss lake. Environ. Sci. Technol. 32, 2990–2996 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Archer, D. E. & Johnson, K. A model of the iron cycle in the ocean. Glob. Biogeochem. Cycles 14, 269–279 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Marfey, P. Determination of D-amino acids. II. Use of a bifunctional reagent,1,5-difluoro-2,4-dinitrobenzene. Carlsberg. Res. Commun. 49, 591–569 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Donat, J. R. & Bruland, K. W. Direct determination of dissolved cobalt and nickel in seawater by differential pulse cathodic stripping voltammetry preceded by adsorptive collection of cyclohexane-1,2-dione dioxime complexes. Anal. Chem. 60, 240–244 (1988).

    Article  CAS  Google Scholar 

  30. Hudson, R. J. M. & Morel, F. M. M. Distinguishing between extra- and intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34, 1113–1120 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF/DOE Environmental Molecular Science Institute (A.B. and K.W.B.), the National Institutes of Health (A.B.) and the University of California President's postdoctoral fellowship program (K.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Butler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbeau, K., Rue, E., Bruland, K. et al. Photochemical cycling of iron in the surface ocean mediated by microbial iron(iii)-binding ligands. Nature 413, 409–413 (2001). https://doi.org/10.1038/35096545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096545

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing