Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A decade of CDK5

Abstract

Since it was identified a decade ago, cyclin-dependent kinase 5 (CDK5) has emerged as a crucial regulator of neuronal migration in the developing central nervous system. CDK5 phosphorylates a diverse list of substrates, implicating it in the regulation of a range of cellular processes ? from adhesion and motility, to synaptic plasticity and drug addiction. Recent evidence indicates that deregulation of this kinase is involved in the pathology of neurodegenerative diseases.

Key Points

  • Cyclin-dependent kinase 5 (CDK5) is a member of the cyclin-dependent kinase (CDK) family. Monomeric CDK5 displays no enzymatic activity, and requires association with a regulatory partner for activation. Two activators of CDK5 ? called p35 and p39 ? have been identified.

  • Association with its activators, p35 or p39, is necessary and sufficient for maximal activation of CDK5. CDK5 activity is dictated by the temporal and spatial expression and intracellular localization of p35 and p39. Transcriptional and post-translational events also regulate CDK5.

  • The best demonstrated role for CDK5 is in regulating the cytoarchitecture of the central nervous system. To date, about two dozen proteins with diverse functions have been identified as CDK5 substrates, and the kinase has been implicated in the regulation of actin dynamics, microtubule stability and transport, cadherin-mediated adhesion, axon guidance, secretion, membrane transport and dopamine signalling. Several groups have recently demonstrated active C5 in non-neuronal tissues, and proposed a role for CDK5 in myogenesis, haematopoietic cell differentiation, spermatogenesis, insulin secretion, and lens differentiation.

  • Treatment of neurons with neurotoxic insults causes calpain-mediated cleavage of p35 to p25 (a 208-residue carboxy-terminal fragment of p35). Although p25 can bind and activate CDK5, it lacks a myristoylation signal, and is more stable than p35. The generation of p25 therefore causes prolonged activation and mislocalization of CDK5, and hyperphosphorylation of substrates like Tau. Introduction of p25 into neurons produces drastic effects, including neurite retraction, microtubule collapse and apoptosis.

  • In the human brain, elevated levels of p25 correlate with Alzheimer's disease. Increased p25 levels and Cdk5-associated kinase activity are also seen in the spinal cord of transgenic mice expressing a mutant superoxide dismutase that was identified in patients with familial amyotrophic lateral sclerosis (ALS). Production of p25 may therefore be a common neurotoxic factor in the pathology of several neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of CDK5.
Figure 2: Regulation of CDK5 and CDK2 by phosphorylation.
Figure 3: Corticogenesis in wild-type and Cdk5−/− mice.
Figure 4: Cellular processes regulated by Cdk5.
Figure 5: Cleavage of p35 to p25 is neurotoxic.

Similar content being viewed by others

References

  1. Lew, J., Beaudette, K., Litwin, C. M. E. & Wang, J. H. Purification and characterization of a novel proline-directed protein kinase from bovine brain. J. Biol. Chem. 267, 13383?13390 (1992).

    CAS  PubMed  Google Scholar 

  2. Meyerson, M. et al. A family of human CDC2-related protein kinases. EMBO J. 11, 2909?2917 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hellmich, M. R., Pant, H. C., Wada, E. & Battey, J. F. Neuronal cdc2-like kinase: a CDC2-related protein kinase with predominantly neuronal expression. Proc. Natl Acad. Sci. USA 89, 10867?10871 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsai, L.-H., Takahashi, T., Caviness Jr, V. S. & Harlow, E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119, 1029?1040 (1993).

    CAS  PubMed  Google Scholar 

  5. Ino, H., Ishizuka, T., Chiba, T. & Tatibana, M. Expression of CDK5 (PSSALRE kinase), a neural Cdc2-related protein kinase, in the mature and developing mouse central and peripheral nervous systems. Brain Res. 661, 196?206 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Lew, J. et al. Neuronal cdc2-like kinase is a complex of cyclin-dependent kinase 5 and a novel brain-specific regulatory subunit. Nature 371, 423?425 (1994).Initial identification of an active CDK5 complex by biochemical purification from brain.

    Article  CAS  PubMed  Google Scholar 

  7. Tsai, L.-H., Delalle, I., Caviness Jr, V. S., Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419?423 (1994).Identification and characterization of p35 as a neuronal activator of CDK5.

    Article  CAS  PubMed  Google Scholar 

  8. Ishiguro, K. et al. Identification of the 23 kDa subunit of Tau protein kinase II as a putative activator of CDK5 in bovine brain. FEBS Lett. 342, 203?208 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Tang, D. et al. An isoform of the neruonal cyclin-dependent kinase 5 (cdk5) activator. J. Biol. Chem. 270, 26897?26903 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Humbert, S., Dhavan, R. & Tsai, L. p39 activates CDK5 in neurons, and is associated with the actin cytoskeleton. J. Cell Sci. 113, 975?983 (2000).

    CAS  PubMed  Google Scholar 

  11. Gervasi, C. & Szaro, B. G. The Xenopus laevis homologue to the neuronal cyclin-dependent kinase (Cdk5) is expressed in embryos by gastrulation. Brain Res. Mol. Brain Res. 33, 192?200 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Philpott, A., Porro, E. B., Kirschner, M. W. & Tsai, L. H. The role of cyclin-dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning. Genes Dev. 11, 1409?1421 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Philpott, A., Tsai, L. & Kirschner, M. W. Neuronal differentiation and patterning in Xenopus: the role of Cdk5 and a novel activator xp35. 2. Dev. Biol. 207, 119?132 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Hellmich, M. R., Kennison, J. A., Hampton, L. L. & Battey, J. F. Cloning and characterization of the Drosophila melanogaster CDK5 homolog. FEBS Lett. 356, 317?321 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Sauer, K., Weigmann, K., Sigrist, S. & Lehner, C. F. Novel members of the Cdc2-related kinase family in Drosophila: Cdk4/6, Cdk5, PFTAIRE, and PITSLRE kinase. Mol. Biol. Cell 7, 1759?1769 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Connell-Crowley, L., Le Gall, M., Vo, D. J. & Giniger, E. The cyclin-dependent kinase Cdk5 controls multiple aspects of axon patterning in vivo. Curr. Biol. 10, 599?602 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, Q. Q., Lee, K. Y. & Wang, J. H. A novel yeast protein showing specific association with the cyclin-dependent kinase 5. FEBS Lett. 378, 48?50 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, D., Patrick, G., Moffat, J., Tsai, L. H. & Andrews, B. Mammalian CDK5 is a functional homologue of the budding yeast Pho85 cyclin-dependent protein kinase. Proc. Natl Acad. Sci. USA 96, 14445?14450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nishizawa, M., Kanaya, Y. & Toh, E. A. Mouse cyclin-dependent kinase (Cdk) 5 is a functional homologue of a yeast Cdk, Pho85 kinase. J. Biol. Chem. 274, 33859?33862 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Beaudette, K., Lew, J. & Wang, J. H. Substrate specificity characterization of a CDC2-like protein kinase purified from bovine brain. J. Biol. Chem. 268, 20825?20830 (1993).CDK5 is a proline-directed kinase with a substrate specificity essentially identical to CDC2 and CDK2, which is important to consider when identifying in vivo substrates of CDK5.

    CAS  PubMed  Google Scholar 

  21. Songyang, Z. et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin?dependent kinase II, CDK5, and ERK1. Mol. Cell. Biol. 16, 6486?6493 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moreno, S. & Nurse, P. Substrates for p34 cdc2: in vivo veritas? Cell 61, 549?551 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050?2054 (1994).

    Article  Google Scholar 

  24. Brown, N. R. et al. The crystal structure of cyclin A. Structure 3, 1235?1247 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Tang, D., Chun, A. C., Zhang, M. & Wang, J. H. Cyclin-dependent kinase 5 (Cdk5) activation domain of neuronal Cdk5 activator. Evidence of the existence of cyclin fold in neuronal Cdk5a activator. J. Biol. Chem. 272, 12318?12327 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Tarricone, C. et al. Structure and regulation of the CDK5?p25nck5a complex. Mol. Cell (in the press).Structure of the p25?CDK5 complex shows important regulatory mechanisms for CDK5, distinct from mitotic CDKs.

  27. Jeffrey, P. D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA?CDK2 complex. Nature 376, 313?320 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Russo, A. A., Jeffrey, P. D. & Pavletich, N. P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nature Struct. Biol. 3, 696?700 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Poon, R. Y., Lew, J. & Hunter, T. Identification of functional domains in the neuronal Cdk5 activator protein. J. Biol. Chem. 272, 5703?5708 (1997).The residues and domain of p35 required for activation of CDK5 have important implications for its regulation.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng, M., Leung, C. L. & Liem, R. K. Region-specific expression of cyclin-dependent kinase 5 (Cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system. J. Neurobiol. 35, 141?159 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Delalle, I., Bhide, P. G., Caviness, V. S. J. & Tsai, L.-H. Temporal and spatial patterns of expression of p35, a regulatory subunit of cyclin-dependent kinase 5, in the nervous system of the mouse. J. Neurocytol. 26, 283?296 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Cai, X. H. et al. Changes in the expression of novel Cdk5 activator messenger RNA (p39nck5ai mRNA) during rat brain development. Neurosci. Res. 28, 355?360 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Honjyo, Y., Kawamoto, Y., Nakamura, S., Nakano, S. & Akiguchi, I. Immunohistochemical localization of CDK5 activator p39 in the rat brain. Neuroreport 10, 3375?3379 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, D. C. et al. The expression of Cdk5, p35, p39, and Cdk5 kinase activity in developing, adult, and aged rat brains. Neurochem. Res. 25, 923?929 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Humbert, S., Lanier, L. M. & Tsai, L. H. Synaptic localization of p39, a neuronal activator of cdk5. Neuroreport 11, 2213?2216 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697?711 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Fu, A. K. et al. Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nature Neurosci. 4, 374?381 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ko, J. et al. p35 and p39 are essential for Cdk5 function during neurodevelopment. J. Neurosci. 21, 6758?6771 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F. M. & Tsai, L. -H. The Cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10, 816?825. (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Nikolic, M., Chou, M. M., Lu, W., Mayer, B. J. & Tsai, L. H. The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395, 194?198 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Patrick, G. N. et al. Conversion of p35 to p25 de-regulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615?622 (1999).First study to link the generation of p25 to Alzheimer's disease, underscoring that CDK5 deregulation can have pathological consequences.

    Article  CAS  PubMed  Google Scholar 

  42. Patrick, G. N., Zhou, P., Kwon, Y. T., Howley, P. M. & Tsai, L. H. p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin?proteasome pathway. J. Biol. Chem. 273, 24057?24064 (1998).This study showed that p35 is a short-lived protein, and identified a negative feedback regulatory mechanism for CDK5.

    Article  CAS  PubMed  Google Scholar 

  43. Pigino, G., Paglini, G., Ulloa, L., Avila, J. & Caceres, A. Analysis of the expression, distribution and function of cyclin dependent kinase 5 (Cdk5) in developing cerebellar macroneurons. J. Cell Sci. 110, 257?270 (1997).

    CAS  PubMed  Google Scholar 

  44. Paglini, G. et al. Evidence for the participation of the neuron-specific CDK5 activator P35 during laminin-enhanced axonal growth. J. Neurosci. 18, 9858?9869 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, B. S., Zhang, L., Gu, J., Amin, N. D. & Pant, H. C. Integrin alpha(1) beta(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys?Ser?Pro tail domain phosphorylation. J. Neurosci. 20, 6055?6062 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harada, T., Morooka, T., Ogawa, S. & Nishida, E. ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nature Cell Biol. 3, 453?459 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Tokuoka, H. et al. Brain-derived neurotrophic factor-induced phosphorylation of neurofilament-H subunit in primary cultures of embryo rat cortical neurons. J. Cell Sci. 113, 1059?1068 (2000).

    CAS  PubMed  Google Scholar 

  48. Greengard, P., Allen, P. B. & Nairn, A. C. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23, 435?447 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Bibb, J. A. et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410, 376?380 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, J. et al. Induction of cyclin-dependent kinase 5 in the hippocampus by chronic electroconvulsive seizures: role of δFosB. J. Neurosci. 20, 8965?8971 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu, Y., Rosenblatt, J. & Morgan, D. O. Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J. 11, 3995?4005 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zukerberg, L. R. et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633?646 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Matsuura, I. & Wang, J. H. Demonstration of cyclin-dependent kinase inhibitory serine/threonine kinase in bovine thymus. J. Biol. Chem. 271, 5443?5450 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Qi, Z., Huang, Q. Q., Lee, K. Y., Lew, J. & Wang, J. H. Reconstitution of neuronal Cdc2-like kinase from bacteria-expressed Cdk5 and an active fragment of the brain-specific activator. Kinase activation in the absence of Cdk5 phosphorylation. J. Biol. Chem. 270, 10847?10854 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Morgan, D. O. Principles of CDK regulation. Nature 374, 131?134 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, M.-H. et al. The brain-specific activator p35 allows cdk5 to escape inhibition by p27Kip1 in neurons. Proc. Natl Acad. Sci. USA 93, 3259?3263 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, K. Y., Rosales, J. L., Tang, D. & Wang, J. H. Interaction of cyclin-dependent kinase 5 (Cdk5) and neuronal Cdk5 activator in bovine brain. J. Biol. Chem. 271, 1538?1543 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA 93, 11173?11178 (1996).Cdk5 -deficient mice uncovered the role of Cdk5 in CNS development, particularly neuronal positioning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B. & Herrup, K. Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370?6377 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ohshima, T. et al. Migration defects of Cdk5(?/?) neurons in the developing cerebellum is cell autonomous. J. Neurosci. 19, 6017?6026 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tanaka, T. et al. Neuronal cyclin-dependent kinase 5 activity is critical for survival. J. Neurosci. 21, 550?558 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures and adult lethality. Neuron 18, 29?42 (1997).This model established p35 as a crucial activator of Cdk5 during corticogenesis.

    Article  CAS  PubMed  Google Scholar 

  63. Kwon, Y. T. & Tsai, L. H. A novel disruption of cortical development in p35−/− mice distinct from reeler. J. Comp. Neurol. 395, 510?522 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Kwon, Y. T., Tsai, L. H. & Crandall, J. E. Callosal axon guidance defects in p35(−/−) mice. J. Comp. Neurol. 415, 218?229 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Xiong, W., Pestell, R. & Rosner, M. R. Role of cyclins in neuronal differentiation of immortalized hippocampal cells. Mol. Cell Biol. 17, 6585?6597 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173?180 (2000).

    Article  CAS  Google Scholar 

  67. Ishiguro, K. et al. Tau protein kinase I converts normal Tau protein into A68-like component of paired helical filaments. J. Biol. Chem. 267, 10897?10901 (1992).

    CAS  PubMed  Google Scholar 

  68. Sobue, K. et al. Interaction of neuronal Cdc2-like protein kinase with microtubule-associated protein tau. J. Biol. Chem. 275, 16673?16680 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Paudel, H. K., Lew, J., Ali, Z. & Wang, J. H. Brain proline-directed protein kinase phosphorylates Tau on sites that are abnormally phosphorylated in Tau associated with Alzheimer's paired helical filaments. J. Biol. Chem. 268, 23512?23518 (1993).

    CAS  PubMed  Google Scholar 

  70. Baumann, K., Mandelkow, E. M., Biernat, J., Piwnica-Worms, H. & Mandelkow, E. Abnormal Alzheimer-like phosphorylation of Tau-protein by cyclin-dependent kinases Cdk2 and Cdk5. FEBS Lett. 336, 417?424 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Evans, D. B. et al. Tau phosphorylation at serine 396 and serine 404 by human recombinant Tau protein kinase II inhibits Tau's ability to promote microtubule assembly. J. Biol. Chem. 275, 24977?24983 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Wada, Y. et al. Microtubule-stimulated phosphorylation of tau at Ser202 and Thr205 by Cdk5 decreases its microtubule nucleation activity. J. Biochem. 124, 738?746 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Lew, J., Winkfein, R. J., Paudel, H. K. & Wang, J. H. Brain proline-directed protein kinase is a neurofilament kinase which displays high sequence homology to p34cdc2. J. Biol. Chem. 267, 25922?25926 (1992).

    CAS  PubMed  Google Scholar 

  74. Shetty, K. T., Link, W. T. & Pant, H. C. Cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: isolation and characterization. Proc. Natl Acad. Sci. USA 90, 6844?6848 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grant, P., Sharma, P. & Pant, H. C. Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. Eur. J. Biochem. 268, 1534?1546 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Nixon, R. A. Dynamic behavior and organization of cytoskeletal proteins in neurons: reconciling old and new findings. Bioessays 20, 798?807 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Hisanaga, S. et al. Tau protein kinase II has a similar characteristic to Cdc2 kinase for phosphorylating neurofilament proteins. J. Biol. Chem. 268, 15056?15060 (1993).

    CAS  PubMed  Google Scholar 

  78. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619?627 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Takeichi, M., Inuzuka, H., Shimamura, K., Matsunaga, M. & Nose, A. Cadherin-mediated cell?cell adhesion and neurogenesis. Neurosci. Res. Suppl. 13, S92?S96 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Hirohashi, S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am. J. Pathol. 153, 333?339 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takeichi, M. Cadherins: a molecular family important in selective cell?cell adhesion. Annu. Rev. Biochem. 59, 237?252 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M. & Tsai, L.-H. Regulation of the N-cadherin-mediated adhesion by the p35/Cdk5 kinase. Curr. Biol. 10, 363?372 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kesavapany, S. et al. p35/cdk5 binds and phosphorylates β-catenin and regulates β-catenin/presenilin-1 interaction. Eur. J. Neurosci. 13, 241?247 (2001).

    CAS  PubMed  Google Scholar 

  84. Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681?696 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Reiner, O. LIS1. let's interact sometimes... (part 1). Neuron 28, 633?636 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, Z., Steward, R. & Luo, L. Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nature Cell Biol. 2, 776?783 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Ratner, N., Bloom, G. S. & Brady, S. T. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein. J. Neurosci. 18, 7717?7726 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matsubara, M. et al. Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J. Biol. Chem. 271, 21108?21113 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Shuang, R. et al. Regulation of Munc18/syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings. J. Biol. Chem. 273, 4957?4966 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Fletcher, A. I. et al. Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J. Biol. Chem. 274, 4027?4035 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Floyd, S. R. et al. Amphiphysin 1 binds the cyclin-dependent kinase (Cdk) 5 regulatory subunit p35 and is phosphorylated by Cdk5 and Cdc2. J. Biol. Chem. 276, 8104?8110 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Greengard, P., Benfenati, F. & Valtorta, F. Synapsin I, an actin-binding protein regulating synaptic vesicle traffic in the nerve terminal. Adv. Second Messenger Phosphoprotein Res. 29, 31?45 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Jahn, R. Sec1/Munc18 proteins: mediators of membrane fusion moving to center stage. Neuron 27, 201?204 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Rosales, J. L., Nodwell, M. J., Johnston, R. N. & Lee, K. Y. Cdk5/p25(nck5a) interaction with synaptic proteins in bovine brain. J. Cell Biochem. 78, 151?159 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Bibb, J. A. et al. Phosphorylation of DARPP32 by Cdk5 modulates dopamine signalling in neurons. Nature 402, 669?671 (1999).This study is an example of the role of CDK5 in the modulation of signal transduction pathways.

    Article  CAS  PubMed  Google Scholar 

  96. Bibb, J. A. et al. Phosphorylation of protein phosphatase inhibitor-1 by Cdk5. J. Biol. Chem. 276, 14490?14497 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kobayashi, S. et al. A Cdc2-related kinase PSSALRE/Cdk5 is homologous with the 30 kDa subunit of Tau protein kinase II, a proline?directed protein kinase associated with microtubule. FEBS Lett. 335, 171?175 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Pei, J. J. et al. Accumulation of cyclin?dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrillary degeneration. Brain Res. 797, 267?277 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Kusakawa, G. et al. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J. Biol. Chem. 275, 17166?17172 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Lee, M. S. et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360?364 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Nath, R. et al. Processing of Cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem. Biophys. Res. Commun. 274, 16?21 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Ahlijanian, M. K. et al. Hyperphosphorylated Tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of Cdk5. Proc. Natl Acad. Sci. USA 97, 2910?2915 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Van den Haute, C. et al. Coexpression of human CDK5 and its activator p35 with human protein Tau in neurons in brain of triple transgenic mice. Neurobiol. Dis. 8, 32?44 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Selkoe, D. J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, A23?A31 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Nakagawa, T. & Yuan, J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell. Biol. 150, 887?894 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Busciglio, J., Lorenzo, A., Yeh, J. & Yankner, B. A. β-amyloid fibrils induce Tau phosphorylation and loss of microtubule binding. Neuron 14, 879?888 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Alvarez, A., Toro, R., Caceres, A. & Maccioni, R. B. Inhibition of tau phosphorylating protein kinase Cdk5 prevents β-amyloid-induced neuronal death. FEBS Lett. 459, 421?426 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Nguyen, M. D., Lariviere, R. C. & Julien, J. P. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30, 135?147 (2001).This study raises the possibility that p25?CDK5 is a general neurotoxic factor that could contribute to several neurodegenerative diseases.

    Article  CAS  PubMed  Google Scholar 

  109. Cleveland, D. W. From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron 24, 515?520 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Julien, J. P. Amyotrophic lateral sclerosis. unfolding the toxicity of the misfolded. Cell 104, 581?591 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Kato, G. & Maeda, S. Neuron-specific Cdk5 kinase is responsible for mitosis-independent phosphorylation of c-Src at Ser75 in human Y79 retinoblastoma cells. J. Biochem. 126, 957?961 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Iijima, K. et al. Neuron-specific phosphorylation of Alzheimer's β-amyloid precursor protein by cyclin-dependent kinase 5. J. Neurochem. 75, 1085?1091 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Hayashi, F. et al. Phosphorylation by cyclin-dependent protein kinase 5 of the regulatory subunit of retinal cGMP phosphodiesterase. II. Its role in the turnoff of phosphodiesterase in vivo. J. Biol. Chem. 275, 32958?32965 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Matsuura, I. et al. Phosphorylation by cyclin-dependent protein kinase 5 of the regulatory subunit of retinal cGMP phosphodiesterase. I. Identification of the kinase and its role in the turnoff of phosphodiesterase in vitro. J. Biol. Chem. 275, 32950?32957 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Lee, K. Y., Helbing, C. C., Choi, K. S., Johnston, R. N. & Wang, J. H. Neuronal Cdc2-like kinase (Nclk) binds and phosphorylates the retinoblastoma protein. J. Biol. Chem. 272, 5622?5626 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Lazaro, J. B. et al. Cyclin dependent kinase 5, Cdk5, is a positive regulator of myogenesis in mouse C2 cells. J. Cell Sci. 110, 1251?1260 (1997).

    CAS  PubMed  Google Scholar 

  117. Gao, C. Y., Zakeri, Z., Zhu, Y., He, H. & Zelenka, P. S. Expression of Cdk5, p35, and Cdk5-associated kinase activity in the developing rat lens. Dev. Genet. 20, 267?275 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Chen, F. & Studzinski, G. P. Expression of the neuronal cyclin-dependent kinase 5 activator p35Nck5a in human monocytic cells is associated with differentiation. Blood 97, 3763?3767 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, Q., Ahuja, H. S., Zakeri, Z. F. & Wolgemuth, D. J. Cyclin-dependent kinase 5 is associated with apoptotic cell death during development and tissue remodeling. Dev. Biol. 183, 222?233 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Musa, F. R. et al. Expression of cyclin-dependent kinase 5 and associated cyclins in Leydig and Sertoli cells of the testis. J. Androl. 19, 657?666 (1998).

    CAS  PubMed  Google Scholar 

  121. Musa, F. R., Takenaka, I., Konishi, R. & Tokuda, M. Effects of luteinizing hormone, follicle-stimulating hormone, and epidermal growth factor on expression and kinase activity of cyclin-dependent kinase 5 in Leydig TM3 and Sertoli TM4 cell lines. J. Androl. 21, 392?402 (2000).

    CAS  PubMed  Google Scholar 

  122. Session, D. R. et al. Cyclin-dependent kinase 5 is expressed in both Sertoli cells and metaphase spermatocytes. Fertil. Steril. 75, 669?673 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Lilja, L. et al. Cyclin-dependent kinase 5 promotes insulin exocytosis. J. Biol. Chem. 276, 34199?34205 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Lenburg, M. E. & O'Shea, E. K. Signaling phosphate starvation. Trends Biochem. Sci. 21, 383?387 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Andrews, B. & Measday, V. The cyclin family of budding yeast: abundant use of a good idea. Trends Genet. 14, 66?72 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Moffat, J., Huang, D. & Andrews, B. Functions of Pho85 cyclin-dependent kinases in budding yeast. Prog. Cell Cycle Res. 4, 97?106 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, J. et al. Interaction of yeast Rvs167 and Pho85 cyclin-dependent kinase complexes may link the cell cycle to the actin cytoskeleton. Curr. Biol. 8, 1310?1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Espinoza, F. H. et al. Cak1 is required for Kin28 phosphorylation and activation in vivo. Mol. Cell Biol. 18, 6365?6373 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nishizawa, M., Suzuki, K., Fujino, M., Oguchi, T. & Toh?e, A. The Pho85 kinase, a member of the yeast cyclin-dependent kinase (Cdk) family, has a regulation mechanism different from Cdks functioning throughout the cell cycle. Genes Cells 4, 627?642 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Huei Tsai.

Related links

Related links

DATABASE

Interpro:

cyclins

 Locuslink:

α-actinin

Amphiphysin

BDNF

c-Abl

N-cadherin

calpain

β-catenin

CDC2

CDK2

CDK5

EGR1

Mrf4

MYT1

Neuregulin

NFH

NFM

N-cadherin

Nudel

p21

p27

p35

p39

PAK1

synapsin 1

superoxide dismutase

Tau

 Mouse Genome Informatics:

Munc18

protein phosphatase inhibitor-1

 OMIM

Alzheimer's disease

Amytrophic lateral sclerosis

 SGD:

CAK

Cdc28

Pcl1

Pcl2

Pcl6

Pcl9

Pho4

Pho5

Pho80

Pho85

Rvs167

Wee1

 Swiss-Prot:

Cables

MAP1B

NGF

Glossary

CYTOARCHITECTURE

Cellular organization of a tissue.

ORTHOLOGUES

Genes in different species that are homologous because they are derived from a common ancestral gene.

MYOGENESIS

Differentiation and development of muscle.

LAMELLIPODIA

Thin, sheet-like extensions of the cytoplasm, temporarily put forward by some eukaryotic cells (such as fibroblasts) when moving.

FILOPODIA

Fine, thread-like extensions of the cytoplasm of eukaryotic cells.

PULSE?CHASE EXPERIMENTS

A radioactive small molecule is added to a cell for a brief period (the pulse), during which it is incorporated into macromolecules. The fate of the newly synthesized radioactive macromolecule is examined when the radioactive small molecule is removed and replaced by an excess of the same molecule, but unlabelled (the chase).

UBIQUITIN?PROTEASOME PATHWAY

A small protein, ubiquitin, becomes covalently linked to a cellular protein, which is then targeted for degradation by a multiprotein complex of proteolytic enzymes (called the proteasome).

FASCICULATION

Bundling of nerve fibres.

CALLOSAL AXON

An axon of the corpus callosum.

CORPUS CALLOSUM

A wide tract of fibres that connects the two cerebral hemispheres, and is involved in the transfer of information from one hemisphere to the other.

AFFERENT

A sensory nerve that brings impulses towards the central nervous system.

CHROMATOLYTIC CHANGES

Following injury of axons, several changes occur in the cell body of a neuron. It swells and could even double in size. The nucleus swells and moves to an eccentric position, usually opposite the axon hillock. The rough endoplasmic reticulum breaks apart and moves to the periphery of the swollen cell body.

MICROTUBULE NUCLEATION

Microtubules are assembled by polymerization of α- and β- tubulin dimers. The addition of nuclei in the form of microtubule fragments to a solution of α- and β-tubulin dimers greatly accelerates the polymerization rate and is called microtubule nucleation.

ADHERENS JUNCTION

Cell?cell adhesive junctions that are linked to cytoskeletal filaments of the microfilament type.

RETROGRADE MOTOR

A motor protein that moves cargo in axons of neurons towards the cell body of neurons.

ANTEROGRADE TRANSPORT

Transport of cargo in axons of neurons away from the cell body.

SNARE

Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins are a family of membrane-tethered coiled-coil proteins that regulate fusion reactions and target specificity in the vacuolar system.

NEOSTRIATUM

The input nuclei for the basal ganglia, which participates in the control of movement and receives input mainly from the cerebral cortex.

PERIKARYAL

The cell body containing the nucleus in nerve cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhavan, R., Tsai, LH. A decade of CDK5. Nat Rev Mol Cell Biol 2, 749–759 (2001). https://doi.org/10.1038/35096019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096019

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing