Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of ordered ice nanotubes inside carbon nanotubes

Abstract

Following their discovery1, carbon nanotubes have attracted interest not only for their unusual electrical and mechanical properties, but also because their hollow interior can serve as a nanometre-sized capillary2,3,4,5,6,7, mould8,9,10,11 or template12,13,14 in material fabrication. The ability to encapsulate a material in a nanotube also offers new possibilities for investigating dimensionally confined phase transitions15. Particularly intriguing is the conjecture16 that matter within the narrow confines of a carbon nanotube might exhibit a solid–liquid critical point17 beyond which the distinction between solid and liquid phases disappears. This unusual feature, which cannot occur in bulk material, would allow for the direct and continuous transformation of liquid matter into a solid. Here we report simulations of the behaviour of water encapsulated in carbon nanotubes that suggest the existence of a variety of new ice phases not seen in bulk ice, and of a solid–liquid critical point. Using carbon nanotubes with diameters ranging from 1.1 nm to 1.4 nm and applied axial pressures of 50 MPa to 500 MPa, we find that water can exhibit a first-order freezing transition to hexagonal and heptagonal ice nanotubes, and a continuous phase transformation into solid-like square or pentagonal ice nanotubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential energy against temperature for water confined in four types of single-walled carbon nanotube.
Figure 2: Snapshots of quenched molecular coordinates.
Figure 3: Properties associated with the first-order phase transition in the (16,16) SWCN at a fixed pressure of 50 MPa.
Figure 4: Properties associated with the phase transformation in the (14,14) SWCN.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Pederson, M. R. & Broughton, J. Q. Nanocapillarity in fullerene tubules. Phys. Rev. Lett. 69, 2689–2692 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Ajayan, P. M. & Iijima, S. Capillarity-induced filling of carbon nanotubes. Nature 361, 333–334 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Dujardin, E., Ebbesen, T. W., Hiura, H. & Tanigaki, K. Capillarity and wetting of carbon nanotubes. Science 265, 1850–1852 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Tsang, S. C., Chen, Y. K., Harris, P. J. F. & Green, M. L. H. A simple chemical method of opening and filling carbon nanotubes. Nature 372, 159–162 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Ugarte, D., Chatelain, A. & de Heer, W. A. Nanocapillarity and chemistry in carbon nanotubes. Science 274, 1897–1899 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Kiang, C. H., Choi, J. S., Tran, T. T. & Bacher, A. D. Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes. J. Phys. Chem. B 103, 7449–7451 (1999).

    Article  CAS  Google Scholar 

  8. Ruoff, R. S. et al. Single crystal metals encapsulated in carbon nanoparticles. Science 259, 346–348 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Guerret-Piecourt, C., Le Bouar, Y., Loiseau, A. & Pascard, H. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 372, 761–764 (1994).

    Article  ADS  CAS  Google Scholar 

  10. David, V. P. et al. Controlled-size nanocapsules. Nature 374, 602 (1995).

    Article  ADS  Google Scholar 

  11. Meyer, R. R. et al. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289, 1324–1326 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Ajayan, P. M., Stephan, O., Redlich, P. & Colliex, C. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 375, 564–567 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Dai, H. et al. Synthesis and characterization of carbide nanorods. Nature 375, 769–772 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Han, W., Fan, S., Li, Q. & Hu, Y. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287–1289 (1997).

    Article  CAS  Google Scholar 

  15. Fan, X. et al. Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys. Rev. Lett. 84, 4621–4624 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Ball, P. New horizons in inner space. Nature 361, 297 (1993).

    Article  ADS  Google Scholar 

  17. Stanley, H. E. in Introduction to Phase Transitions and Critical Phenomena 2 (Oxford Univ. Press, New York, 1971).

    Google Scholar 

  18. Lobban, C., Finney, J. L. & Kuhs, W. F. The structure and ordering of ices III and V. J. Chem. Phys. 112, 7169–7180 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Hamada, N., Sawada, S. & Oshiyama, A. New one-dimensional conductors—graphitic microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Koga, K., Parra, R. D., Tanaka, H. & Zeng, X. C. Ice nanotubes: What does the unit cell look like? J. Chem. Phys. 113, 5037–5040 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Goto, K., Hondoh, T. & Higashi, A. Determination of diffusion coefficients of self-interstitials in ice with a new method of observing climb of dislocations by X-ray topography. Jpn J. Appl. Phys. 25, 351–357 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Gao, G. T., Zeng, X. C. & Tanaka, H. The melting temperature of proton-disordered hexagonal ice: A computer simulation of TIP4P model of water. J. Chem. Phys. 112, 8534–8538 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Jorgensen, W. L. et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Steele, W. A. Interaction of Gases with Solid Surfaces (Pergamon, Oxford, 1974).

    Google Scholar 

  25. Rapaport, D. C. The Art of Molecular Dynamics Simulations (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

Download references

Acknowledgements

K.K. and H.T. are supported by the Japan Society for the Promotion of Science (JSPS), the Japan Ministry of Education, and Institute of Molecular Science. X.C.Z. is supported by the US National Science Foundation and Office of Naval Research, and by a JSPS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Koga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, K., Gao, G., Tanaka, H. et al. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412, 802–805 (2001). https://doi.org/10.1038/35090532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35090532

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing