Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Earth's mantle

Abstract

Seismological images of the Earth's mantle reveal three distinct changes in velocity structure, at depths of 410, 660 and 2,700 km. The first two are best explained by mineral phase transformations, whereas the third—the D″ layer—probably reflects a change in chemical composition and thermal structure. Tomographic images of cold slabs in the lower mantle, the displacements of the 410-km and 660-km discontinuities around subduction zones, and the occurrence of small-scale heterogeneities in the lower mantle all indicate that subducted material penetrates the deep mantle, implying whole-mantle convection. In contrast, geochemical analyses of the basaltic products of mantle melting are frequently used to infer that mantle convection is layered, with the deeper mantle largely isolated from the upper mantle. We show that geochemical, seismological and heat-flow data are all consistent with whole-mantle convection provided that the observed heterogeneities are remnants of recycled oceanic and continental crust that make up about 16 and 0.3 per cent, respectively, of mantle volume.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Speeds of seismic waves in the Earth, showing the major discontinuities at 410 and 660 km depth, and the D″ layer at the base of the mantle.
Figure 2: Schematic phase diagram of Mg2SiO4 olivine in mantle peridotite.
Figure 3: Angular correlation function of a shear-wave tomographic model30 as a function of depth.
Figure 4: Approximate mass balance for a bulk silicate Earth made up of continental crust, ‘sterile’ mantle, recycled oceanic crust, old recycled oceanic crust, and recycled continental material.
Figure 5: Visibility of mantle heterogeneity by seismic scattering.
Figure 6: Sketch of proposed model of a chemically unstratified mantle.

Similar content being viewed by others

References

  1. McDonough, W. F & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Newsom, H. E. in Global Earth Physics: Handbook of Physical Constants Vol. 1 (ed. Ahrens, T. J.) 159–189 (Reference Shelf Series, American Geophysical Union, Washington DC, 1995).

    Google Scholar 

  3. Allègre, C. J., Manhès, G. & Gopel, C. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995).

    Article  ADS  Google Scholar 

  4. Halliday, A., Rehkämper, M., Lee, D.-C. & Yi, W. Early evolution of the Earth and Moon: New constraints from Hf-W isotope geochemistry. Earth Planet. Sci. Lett. 142, 75–89 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Schilling, J.-G. Iceland mantle plume: geochemical evidence along Reykjanes Ridge. Nature 242, 565–571 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Allègre, C. J., Staudacher, T. & Sarda, P. Rare-gas systematics—formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987).

    Article  ADS  Google Scholar 

  8. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Allègre, C. J., Hofmann, A. W. & O'Nions, R. K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996).

    Article  ADS  Google Scholar 

  10. O'Nions, R. K. & Oxburgh, R. Heat and helium in the Earth. Nature 306, 429–431 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Article  ADS  Google Scholar 

  12. Lay, T., Williams, Q. & Garnero, E. J. The core–mantle boundary layer and deep Earth dynamics. Nature 392, 461–468 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Bernal, J. D. Commentary. Observatory 59, 265–269 (1936).

    Google Scholar 

  14. Ringwood, A. E. & Major, A. High-pressure transformations in pyroxenes. Earth Planet. Sci. Lett. 1, 241–245 (1966).

    Article  ADS  CAS  Google Scholar 

  15. Liu, L. The post-spinel phase of forsterite. Nature 262, 770–772 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Ito, E. & Takahashi, E. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  17. Fei, Y., Saxena, S. & Navrotsky, A. Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO-SiO2 at high pressure and temperature. J. Geophys. Res. 95, 6915–6928 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Akaogi, M. & Akimoto, S. Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12 - Mg3Al2Si3O12 and Fe4Si4O12 - Fe3Al2Si3O12 at high pressures and temperatures. Phys. Earth Planet. Inter. 15, 90–106 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Ringwood, A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55, 2083–2110 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Wood, B. J. Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth Planet. Sci. Lett. 174, 341–354 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Funamori, N., Yagi, T. & Utsumi, W. Thermoelastic properties of MgSiO3 perovskite determined by in situ X-ray observations up to 30 GPa and 2000 K. J. Geophys. Res. 101, 8257–8269 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Fiquet, G., Dewaele, A., Andrault, D., Kunz, M. & LeBihan, T. Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett. 27, 21–24 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Anderson, D. L & Bass, J. D. Transition region of the Earth's upper mantle. Nature 320, 321–328 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Jeanloz, R. & Knittle, E. Density and composition of the lower mantle. Phil. Trans. R. Soc. Lond. A 328, 377–389 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Stixrude, L., Hemley, R. J., Fei, Y. & Mao, H. K. Thermoelasticity of silicate perovskite and magnesiowüstite and stratification of the Earth's mantle. Science 257, 1099–1101 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Jeffreys, H. & Bullen, K. E. Seismological Tables (British Association Seismological Investigators Committee, London, 1940).

    Google Scholar 

  27. Shearer, P. M. Global mapping of upper-mantle reflectors from long-period SS precursors. Geophys. J. Int. 115, 878–904 (1993).

    Article  ADS  Google Scholar 

  28. Flanagan, M. P. & Shearer, P. M. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J. Geophys. Res. 103, 2673–2692 (1998).

    Article  ADS  Google Scholar 

  29. van der Hilst, R., Engdahl, E., Spakman, W. & Nolet, G. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353, 37–43 (1991).

    Article  ADS  Google Scholar 

  30. Grand, S. P. Mantle shear structure beneath the americas and surrounding oceans. J. Geophys. Res. 99, 11591–11621 (1994).

    Article  ADS  Google Scholar 

  31. Masters, G., Johnson, S., Laske, G. & Bolton, H. A shear velocity model of the mantle. Phil. Trans. R. Soc. Lond. A 354, 1385–1410 (1996).

    Article  ADS  Google Scholar 

  32. Vidale, J. E & Benz, H. M. Upper mantle seismic discontinuities and the thermal structure of subduction zones. Nature 356, 678–683 (1992).

    Article  ADS  Google Scholar 

  33. Helffrich, G. R. & Bina, C. R. Frequency dependence of the visibility and depths of mantle seismic discontinuities. Geophys. Res. Lett. 21, 2613–2616 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Stixrude, L. Structure and sharpness of phase transitions and mantle discontinuities. J. Geophys. Res. 102, 14835–14852 (1997).

    Article  ADS  CAS  Google Scholar 

  35. McKenzie, D. P. Speculations on the consequences and causes of plate motions. Geophys. J. R. Astron. Soc. 18, 1–32 (1969).

    Article  ADS  Google Scholar 

  36. Bina, C. R. & Helffrich, G. Phase-transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99, 15853–15860 (1994).

    Article  ADS  CAS  Google Scholar 

  37. Collier, J. & Helffrich, G. Topography of the “410” and “660” km seismic discontinuities in the Izu-Bonin subduction zone. Geophys. Res. Lett. 24, 1535–1538 (1997).

    Article  ADS  Google Scholar 

  38. Castle, J. C & Creager, K. C. Seismic evidence against a mantle chemical discontinuity near 660 km depth beneath Izu-Bonin. Geophys. Res. Lett. 24, 241–244 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Wicks, C. W. & Richards, M. A. A detailed map of the 660-kilometer discontinuity beneath the Izu-Bonin subduction zone. Science 261, 1424–1427 (1993).

    Article  ADS  PubMed  Google Scholar 

  40. Christensen, U. & Yuen, D. The interaction of a subducting lithospheric slab with a chemical or phase boundary. J. Geophys. Res. 89, 4389–4402 (1984).

    Article  ADS  CAS  Google Scholar 

  41. Kincaid, C. & Olson, P. An experimental study of subduction and slab migration. J. Geophys. Res. 92, 13822–13840 (1987).

    ADS  Google Scholar 

  42. Bijwaard, H., Spakman, W. & Engdahl, E. R. Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–30078 (1998).

    Article  ADS  Google Scholar 

  43. Davies, G. & Richards, M. Mantle convection. J. Geol. 100, 151–206 (1992).

    Article  ADS  CAS  Google Scholar 

  44. Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867–19884 (1994).

    Article  ADS  CAS  Google Scholar 

  45. Hedlin, M. A. H., Shearer, P. M. & Earle, P. S. Seismic evidence for small-scale heterogeneity throughout the Earth's mantle. Nature 387, 145–150 (1997).

    Article  ADS  CAS  Google Scholar 

  46. Vidale, J. E & Hedlin, M. A. H. Evidence for partial melt at the core-mantle boundary north of Tonga from the strong scattering of seismic waves. Nature 391, 682–685 (1998).

    Article  ADS  CAS  Google Scholar 

  47. Castle, J. C. & Creager, K. C. Topography of the 660-km seismic discontinuity beneath Izu-Bonin: Implications for tectonic history and slab deformation. J. Geophys. Res. 103, 12511–12527 (1998).

    Article  ADS  Google Scholar 

  48. Kaneshima, S & Helffrich, G. Dipping low-velocity layer in the mid-lower mantle: Evidence for geochemical heterogeneity. Science 283, 1888–1891 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Olson, P., Yuen, D. A. & Balsiger, D. Convective mixing and the fine structure of mantle heterogeneity. Phys. Earth Planet. Inter. 36, 291–304 (1984).

    Article  ADS  Google Scholar 

  50. Allègre, C. J & Turcotte, D. L. Implications of a two-component marble-cake mantle. Nature 323, 123–127 (1986).

    Article  ADS  Google Scholar 

  51. Gurnis, M. & Davies, G. F. Mixing in numerical models of mantle convection incorporating plate kinematics. J. Geophys. Res. 91, 6375–6395 (1986).

    Article  ADS  Google Scholar 

  52. Chai, M., Brown, J. M. & Slutsky, L. J. Thermal diffusivity of mantle minerals. Phys. Chem. Minerals 23, 470–475 (1996).

    Article  ADS  CAS  Google Scholar 

  53. Weber, M. & Davis, J. P. Evidence of a laterally variable lower mantle structure from P- and S-waves. Geophys. J. Int. 102, 231–255 (1990).

    Article  ADS  Google Scholar 

  54. Earle, P. S. & Shearer, P. M. Observations of PKKP precursors used to estimate small-scale topography on the core-mantle boundary. Science 277, 667–670 (1997).

    Article  CAS  Google Scholar 

  55. Yamada, A. & Nakanishi, I. Short-wavelength lateral variation of a D'’ P-wave reflector beneath the southwestern Pacific. Geophys. Res. Lett. 25, 4545–4548 (1998).

    Article  ADS  Google Scholar 

  56. Thomas, C., Weber, M., Wicks, C. W. & Scherbaum, F. Small scatterers in the lower mantle observed at German broadband arrays. J. Geophys. Res. 104, 15073–15088 (1999).

    Article  ADS  Google Scholar 

  57. Revenaugh, J. & Meyer, R. Seismic evidence of partial melt within a possibly ubiquitous low-velocity layer at the base of the mantle. Science 277, 670–673 (1997).

    Article  CAS  Google Scholar 

  58. Garnero, E. J. & Helmberger, D. V. Further structural constraints and uncertainties of a thin laterally varying ultralow-velocity layer at the base of the mantle. J. Geophys. Res. 103, 12495–12509 (1998).

    Article  ADS  Google Scholar 

  59. Kendall, J. M. & Silver, P. G. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412 (1996).

    Article  ADS  CAS  Google Scholar 

  60. Su, W.-J. & Dziewonski, A. M. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter. 100, 135–156 (1997).

    Article  ADS  Google Scholar 

  61. Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7, 1–7 (1997).

    Google Scholar 

  62. Pollack, H. N., Hurter, S. J. & Johnston, J. R. Heat flow from the Earth's interior—analysis of the global data set. Rev. Geophys. 31, 267–280 (1993).

    Article  ADS  Google Scholar 

  63. Hart, S. R. & Zindler, A. In search of a bulk-Earth composition. Chem. Geol. 57, 247–267 (1986).

    Article  ADS  CAS  Google Scholar 

  64. Jochum, K. P., Hofmann, A. W., Ito, E., Seufert, H. M. & White, W. M. K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature 306, 431–436 (1986).

    Article  ADS  Google Scholar 

  65. Van Schmus, W. R. in Global Earth Physics: Handbook of Physical Constants Vol. 1 (ed. Ahrens, T. J.) 283–291 (Reference Shelf Series, American Geophysical Union, Washington DC, 1995).

    Google Scholar 

  66. Jackson, M. J. & Pollack, H. N. On the sensitivity of parameterized convection to the rate of decay of internal heat sources. J. Geophys. Res. 89, 10103–10108 (1984).

    Article  ADS  CAS  Google Scholar 

  67. Christensen, U. Thermal evolution models for the Earth. J. Geophys. Res. 90, 2995–3007 (1985).

    Article  ADS  CAS  Google Scholar 

  68. Rudnick, R. L. Making continental crust. Nature 378, 571–578 (1995).

    Article  ADS  CAS  Google Scholar 

  69. Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  ADS  CAS  Google Scholar 

  70. Kinzler, R. J. & Grove, T. L. Primary magmas of midocean ridge basalts. 2. Applications. J. Geophys. Res. 97, 6907–6926 (1992).

    Article  ADS  CAS  Google Scholar 

  71. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987).

    Article  ADS  CAS  Google Scholar 

  72. Allègre, C. J. Chemical geodynamics. Tectonophysics 81, 109–132 (1982).

    Article  ADS  Google Scholar 

  73. Chase, C. G. The n-plate problem of plate tectonics. Geophys. J. R. Astron. Soc. 29, 117–122 (1972).

    Article  ADS  Google Scholar 

  74. Plank, T. & Langmuir, C. H. The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).

    Article  ADS  CAS  Google Scholar 

  75. Blichert-Toft, J. & Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 149, 243–258 (1997).

    Article  ADS  Google Scholar 

  76. Elliott, T., Zindler, A. & Bourdon, B. Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett. 169, 129–145 (1999).

    Article  ADS  CAS  Google Scholar 

  77. Davies, G. F. Earth's neodymium budget and structure and evolution of the mantle. Nature 290, 208–213 (1981).

    Article  ADS  CAS  Google Scholar 

  78. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Article  ADS  CAS  Google Scholar 

  79. Sleep, N. H. Gradual entrainment of a chemical layer at the base of the mantle by overlying convection. Geophys. J. Int. 95, 437–448 (1988).

    Article  ADS  Google Scholar 

  80. Metcalfe, G., Bina, C. R. & Ottino, J. M. Kinematic considerations for mantle mixing. Geophys. Res. Lett. 22, 743–746 (1995).

    Article  ADS  Google Scholar 

  81. Chernov, L. A. Wave Propagation in a Random Medium (Dover, New York, 1960).

    Book  Google Scholar 

  82. Kornprobst, J. Le massif ultrabasique des Beni Bouchera (Rif Interne, Maroc): étude des péridotites de haute temperature et de haute pression, et des pyroxénites, à grenat ou sans grenat, qui leur sont associées. Contrib. Mineral. Petrol. 23, 283–322 (1969).

    Article  ADS  CAS  Google Scholar 

  83. Nicolas, A., Bouchez, J. L. & Boudier, F. Interprétation cinématique des déformations plastiques dans le massif de lherzolite de Lanzo (Alpes Piémontaises)—comparaison avec d’autres massifs. Tectonophysics 14, 143–171 (1972).

    Article  ADS  Google Scholar 

  84. Porcelli, D. & Wasserburg, G. J. Mass-transfer of helium, neon, argon, and xenon through a steady-state upper-mantle. Geochim. Cosmochim. Acta 59, 4921–4937 (1995).

    Article  ADS  CAS  Google Scholar 

  85. O'Nions, R. K & Tolstikhin, I. N. Limits on the mass flux between lower and upper mantle and stability of layering. Earth Planet. Sci. Lett. 139, 213–222 (1996).

    Article  ADS  CAS  Google Scholar 

  86. Broadhurst, C. L., Drake, M. J., Hagee, B. E. & Bernatowicz, T. J. Solubility and partitioning of Ar in anorthite, diopside, forsterite, spinel, and synthetic basaltic liquids. Geochim. Cosmochim. Acta 54, 299–309 (1990).

    Article  ADS  CAS  Google Scholar 

  87. Rudnick, R. L., Barth, M., Horn, I. & McDonough, W. F. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science 287, 278–281 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Helffrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helffrich, G., Wood, B. The Earth's mantle. Nature 412, 501–507 (2001). https://doi.org/10.1038/35087500

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing