Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From the perception of action to the understanding of intention

Abstract

Humans have an inherent tendency to infer other people's intentions from their actions. Here we review psychophysical and functional neuroimaging evidence that biological motion is processed as a special category, from which we automatically infer mental states such as intention. The mechanism underlying the attribution of intentions to actions might rely on simulating the observed action and mapping it onto representations of our own intentions. There is accumulating neurophysiological evidence to support a role for action simulation in the brain.

Key Points

  • Humans have an inherent ability to understand other people's minds. This process is a component of a 'theory of mind'. This review focuses on a low level of theory of mind — the ability to understand other people's intentions by observing their actions. This ability might be a prerequisite for the higher-level understanding of others' minds.

  • Psychophysical studies show that biological motion is processed as a special category, to which humans from an early age attribute mental states such as intention. The posterior superior temporal sulcus (STS) is involved in the detection of biological motion. This area receives convergent information from both dorsal and ventral visual streams, making it an interface between perception for identification and perception for action.

  • Humans attribute intentions to basic stimuli, including dynamic point-light displays and simple animations, as long as their movement is 'animate' — that is, it is self-propelled, its path may be nonlinear and it may undergo sudden changes of velocity. The STS and the medial prefrontal cortex are activated when mental states are attributed to moving shape stimuli. These areas are also consistently activated by higher-level theory-of-mind tasks in which subjects think about their own or others' mental states.

  • A mechanism for inferring intentions from observed actions is proposed that depends on the same 'forward model' system that labels the consequences of one's own actions as being produced by one's own intentions. Forward models store predictions of the consequences of one's own actions. These stored representations could be recruited when observing someone else's movements to estimate their intentions.

  • This mechanism may be based on simulating the observed action and estimating the actor's intentions based on a representation of one's own intentions, an idea that is reminiscent of simulation theory. There is evidence that simulation and imitation — a case of overt action simulation — facilitate intentional attribution. In particular, neurophysiological evidence supports the existence of a matching system between perception and action, which is recruited during imitation.

  • Psychophysical and neurophysiological studies support the idea that the brain is a powerful simulating machine, designed to detect biological motion in order to extract intentions from the motion and to predict the future actions of other animate beings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain activation in response to biological motion.
Figure 2: The effects of apparent motion.

Similar content being viewed by others

References

  1. Carruthers, P. & Smith, P. K. (eds) Theories of Theories of Mind (Cambridge Univ. Press, Cambridge, UK, 1996).

    Book  Google Scholar 

  2. Goldman, A. I. In defense of simulation theory. Mind Lang. 7, 104–119 (1992).

    Article  Google Scholar 

  3. Gordon, R. M. in Theories of Theories of Mind (eds Carruthers, P. & Smith, P. K.) 11–21 (Cambridge Univ. Press, Cambridge, UK, 1996).

    Book  Google Scholar 

  4. Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14, 201–211 (1973).

    Article  Google Scholar 

  5. Koslowski, L. T. & Cutting, J. E. Recognising the sex of a walker from point-lights mounted on ankles: some second thoughts. Percept. Psychophys. 23, 459 (1978).

  6. Dittrich, W. H., Troscianko, T., Lea, S. E. & Morgan, D. Perception of emotion from dynamic point-light displays represented in dance. Perception 25, 727–738 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Fox, R. & McDaniel, C. The perception of biological motion by human infants. Science 218, 486–487 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Bertenthal, B. I. in Visual Perception and Cognition in Infancy (ed. Granrud, C.) 175–214 (Erlbaum, Hullsdale, New Jersey, 1993).

    Google Scholar 

  9. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Baizer, J., Ungerleider, L. & Desimone, R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaque. J. Neurosci. 11, 168–190 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oram, M. W. & Perrett, D. I. Responses of anterior superior temporal polysensory (STPa) neurons to biological motion stimuli. J. Cogn. Neurosci. 6, 99–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Grossman, E. et al. Brain areas involved in perception of biological motion. J. Cogn. Neurosci. 12, 711–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Grèzes, J. et al. Does perception of biological motion rely on specific brain regions? Neuroimage 13, 775–785 (2001).

    Article  PubMed  Google Scholar 

  14. Grossman, E. & Blake, R. Brain activity evoked by inverted and imagined motion. Vision Res. 41, 1475–1482 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Rizzolatti, G. et al. Localization of grasp representations in humans by PET. 1. Observation versus execution. Exp. Brain Res. 111, 246–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Puce, A., Allison, T., Bentin, S., Gore, J. C. & McCarthy, G. Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18, 2188–2199 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wicker, B., Michel, F., Henaff, M. A. & Decety, J. Brain regions associated with mutual gaze: a PET study. Neuroimage 8, 221–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Freyd, J. J. in Attention and Performance XIV: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience (eds Meyer, D. & Kornblum, S.) 99–119 (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  19. Watson, J. D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79–94 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Kourtzi, Z. & Kanwisher, N. Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci. 12, 48–55 (2000).This fMRI study found greater activation in area MT/MST when viewing static photographs with implied motion than when viewing photographs without implied motion. It is one of the first neurophysiological demonstrations that dynamic information can be extracted from still photographs.

    Article  CAS  PubMed  Google Scholar 

  21. Shiffrar, M. in Handbook of Perception (ed. Goldstein, E. B.) 238–263 (Blackwell, Oxford, 2001).

    Google Scholar 

  22. Shiffrar, M. & Freyd, J. J. Apparent motion of the human body. Psychol. Sci. 1, 257–264 (1990).

    Article  Google Scholar 

  23. Shiffrar, M. & Freyd, J. J. Timing and apparent motion path choice with human body photographs. Psychol. Sci. 4, 379–384 (1993).An excellent demonstration of the cognitive mechanisms involved in human motion perception.

    Article  Google Scholar 

  24. Stevens, J. A., Fonlupt, P., Shiffrar, M. A. & Decety, J. New aspects of motion perception: selective neural encoding of apparent human movements. Neuroreport 11, 109–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Shiffrar M. When what meets where. Curr. Dir. Psychol. Sci. 3, 96–100 (1994).

    Article  Google Scholar 

  26. Frith, C. D. & Frith, U. Interacting minds — a biological basis. Science 286, 1692–1695 (1999).An elegant article that reviews developmental and neuroscientific studies on 'mentalizing,' and proposes that the detection of biological motion may have evolved to enable us to infer other people's mental states.

    Article  CAS  PubMed  Google Scholar 

  27. Heider, F. & Simmel, M. An experimental study of apparent behavior. Am. J. Psychol. 57, 243–249 (1944).

    Article  Google Scholar 

  28. Kassin, K. Heider and Simmel revisited: causal attribution and the animated film technique. Rev. Pers. Soc. Psychol. 3, 145–169 (1982).

    Google Scholar 

  29. Morris, M. W. & Peng, K. Culture and cause: American and Chinese attributions for social and physical events. J. Pers. Soc. Psychol. 67, 949–971 (1994).

    Article  Google Scholar 

  30. Gergely, G., Nadasdy, Z., Csibra, G. & Biro, S. Taking the intentional stance at 12 months of age. Cognition 56, 165–193 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Uller, C. & Nichols, S. Goal attribution in chimpanzees. Cognition 76, B27–34 (2000).This fascinating study shows that chimpanzees have an understanding of the 'goals' of two-dimensional objects in simple video displays.

    Article  CAS  PubMed  Google Scholar 

  32. Castelli, F., Happé, F., Frith, U. & Frith, C. D. Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement pattern. Neuroimage 12, 314–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Ito, M. Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurol. 7, 162–176 (1970).

    CAS  PubMed  Google Scholar 

  34. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Wolpert, D. M. & Ghahramani, Z. Computational principles of movement neuroscience. Nature Neurosci. 3 (suppl.), 1212–1217 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Frith, C. D., Blakemore, S.-J. & Wolpert, D. M. Abnormalities in the awareness and control of action. Phil. Trans. R. Soc. Lond. B 355, 1771–1788 (2000).

    Article  CAS  Google Scholar 

  37. Von Holst, E. Relations between the central nervous system and the peripheral organs. Br. J. Anim. Behav. 2, 89–94 (1954).

    Article  Google Scholar 

  38. Miall, R. C. & Wolpert, D. M. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

    Article  PubMed  Google Scholar 

  39. Wolpert, D. M. Computational approaches to motor control. Trends Cogn. Sci. 1, 209–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Blakemore, S.-J., Frith, C. D. & Wolpert, D. W. Spatiotemporal prediction modulates the perception of self-produced stimuli. J. Cogn. Neurosci. 11, 551–559 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, W., Chapman, C. E. & Lamarre, Y. Modulation of the cutaneous responsiveness of neurones in the primary somatosensory cortex during conditioned arm movements in the monkey. Exp. Brain Res. 84, 342–354 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Chapman, C. E. & Ageranioti-Belanger, S. A. Comparison of the discharge of primary somatosensory cortical (SI) neurones during active and passive tactile discrimination. Proc. Third IBRO World Cong. Neurosci. 317 (1991).

  44. Chapman, C. E. Active versus passive touch: factors influencing the transmission of somatosensory signals to primary somatosensory cortex. Can. J. Physiol. Pharmacol. 72, 558–570 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nature Neurosci. 1, 635–640 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Numminen, J., Salmelin, R. & Hari, R. Subject's own speech reduces reactivity of the human auditory cortex. Neurosci. Lett. 265, 119–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Curio, G., Neuloh, G., Numminen, J., Jousmaki, V. & Hari, R. Speaking modifies voice-evoked activity in the human auditory cortex. Hum. Brain Mapp. 9, 183–191 (2000).A magnetoencephalographic study revealing differential responses in human auditory cortex to self-uttered speech compared with listening to a replay of the same speech.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Imamizu, H. et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403, 192–195 (2000).An fMRI study in which subjects learned to use a novel tool. The results show that the cerebellum acquires internal models of objects in the external world.

    Article  CAS  PubMed  Google Scholar 

  49. Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Blakemore, S.-J., Frith, C. D. & Wolpert, D. W. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12, 1879–1885 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. Is the cerebellum a Smith predictor? J. Mot. Behav. 25, 203–216 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Hume, D. Treatise of Human Nature (Oxford University Press, Oxford, 1978).

    Google Scholar 

  53. Gordon, R. M. in Mind and Morals: Essays on Ethics and Cognitive Science (eds May, L., Friedman, M. & Clark, A.) 165–180 (MIT Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  54. Meltzoff, A. N. & Moore, M. K. in Body and the Self (eds Bermúdez, J., Marcel, A. J. & Eilan, N.) 43–69 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  55. Prinz, W. Perception and action planning. Eur. J. Cogn. Psychol. 9, 129–154 (1997).

    Article  Google Scholar 

  56. Shepard, R. N. Ecological constraints on internal representations: resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychol. Rev. 91, 417–447 (1984).

    Article  CAS  PubMed  Google Scholar 

  57. Barresi, J. & Moore, C. Intentional relations and social understanding. Behav. Brain Sci. 19, 107–154 (1996).An interesting cognitive model that attempts to explain how social organisms represent the intentional relations of themselves and other agents.

    Article  Google Scholar 

  58. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996).

    Article  PubMed  Google Scholar 

  59. Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind reading. Trends Cogn. Sci. 2, 493–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Decety, J. et al. Mapping motor representations with PET. Nature 371, 600–602 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Decety, J. et al. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120, 1763–1777 (1997).

    Article  PubMed  Google Scholar 

  62. Ruby, P. & Decety, J. Effect of the subjective perspective taking during simulation of action: a PET investigation of agency. Nature Neurosci. 4, 546–550 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73, 2608–2611 (1995).An important demonstration using TMS of increased activity in the motor system during the observation of actions.

    Article  CAS  PubMed  Google Scholar 

  64. Grèzes, J., Costes, N. & Decety, J. Top down effect of the strategy to imitate on the brain areas engaged in perception of biological motion: a PET investigation. Cogn. Neuropsychol. 15, 553–582 (1998).

    Article  PubMed  Google Scholar 

  65. Hari, R. et al. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc. Natl Acad. Sci. USA 95, 15061–15065 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buccino, G. et al. Action observation activates premotor and parietal areas in somatotopic manner: an fMRI study. Eur. J. Neurosci. 13, 400–404 (2001).An fMRI study that provides the first functional evidence for a somatotopic pattern of activation in the premotor cortex, similar to that of the classical motor cortex homunculus, elicited by the observation of actions made by another individual.

    CAS  PubMed  Google Scholar 

  67. Meltzoff, A. N. & Moore, M. K. Imitation of facial and manual gestures by human neonates. Science 198, 75–78 (1977).

    Article  CAS  PubMed  Google Scholar 

  68. Meltzoff, A. N. Understanding the intentions of others: re-enactment of intended acts by 18-month-old children. Dev. Psychol. 31, 838–850 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gopnik, A. & Meltzoff, A. N. Words, Thoughts, and Theories (MIT Press, Cambridge, Massachusetts, 1997).

    Google Scholar 

  70. Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Fletcher, P. C. et al. Other minds in the brain: a functional imaging study of 'theory of mind' in story comprehension. Cognition 57, 109–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Gallagher, H. L. et al. Reading the mind in cartoons and stories: an fMRI study of 'theory of mind' in verbal and nonverbal tasks. Neuropsychologia 38, 11–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Brunet E., Sarfati Y., Hardy-Bayle M. C. & Decety J. A. PET investigation of attribution of intentions to others with a non-verbal task. Neuroimage 11, 157–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Baron-Cohen, S., Leslie, A. M. & Frith, U. Does the autistic child have a 'Theory of Mind'? Cognition 21, 37–46 (1985).

    Article  CAS  PubMed  Google Scholar 

  75. Corcoran, R., Mercer, G. & Frith, C. D. Schizophrenia, symptomatology and social inference: investigating 'theory of mind' in people with schizophrenia. Schizophr. Res. 17, 5–13 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Happé, F. et al. 'Theory of mind' in the brain. Evidence from a PET scan study of Asperger syndrome. Neuroreport 8, 197–201 (1996).

    Article  PubMed  Google Scholar 

  77. Brunet, E., Sarfati, Y., Hardy-Baylé, M. C. & Decety, J. A PET study of the attribution of intentions to others in schizophrenia: comparison with normal subjects on a non-verbal task. Schizophr. Res. 49 (suppl.), 174 (2001).

    Google Scholar 

  78. Fink, G. R. et al. The neural consequences of conflict between intention and the senses. Brain 122, 497–512 (1999).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Frith, D. Wolpert, J. Kilner and T. Chaminade for their comments on the manuscript. S.-J.B. is supported by a Wellcome Trust International Travelling Research Fellowship. J.D. is supported by the INSERM and by the Programme Cognitique (Principal Investigator J. Nadel) from the French Ministry of Education.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

Schizophrenia

Autistic disorder

MIT ENCYCLOPEDIA OF COGNITIVE SCIENCE

Theory of Mind

Autism

Cognitive development

FURTHER INFORMATION

Uta Frith's website (Theory of mind movies)

Glossary

SIMULATION THEORY

An account by philosophers of mind, which maintains that one represents the mental activities and processes of others by simulation; that is, by generating similar activities and processes in oneself (see Ref. 53).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blakemore, SJ., Decety, J. From the perception of action to the understanding of intention. Nat Rev Neurosci 2, 561–567 (2001). https://doi.org/10.1038/35086023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35086023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing